Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by altered myeloid progenitor cell proliferation and differentiation. As in many other cancers, epigenetic transcriptional repressors such as histone deacetylases (HDACs) are dysregulated in AML. Here, we investigated (1) HDAC gene expression in AML patients and in different AML cell lines and (2) the effect of treating AML cells with the specific class IIA HDAC inhibitor TMP269, by applying proteomic and comparative bioinformatic analyses. We also analyzed cell proliferation, apoptosis, and the cell-killing capacities of TMP269 in combination with venetoclax compared to azacitidine plus venetoclax, by flow cytometry. Our results demonstrate significantly overexpressed class I and class II HDAC genes in AML patients, a phenotype which is conserved in AML cell lines. In AML MOLM-13 cells, TMP269 treatment downregulated a set of ribosomal proteins which are overexpressed in AML patients at the transcriptional level. TMP269 showed anti-proliferative effects and induced additive apoptotic effects in combination with venetoclax. We conclude that TMP269 exerts anti-leukemic activity when combined with venetoclax and has potential as a therapeutic drug in AML.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953883 | PMC |
http://dx.doi.org/10.3390/cancers15041039 | DOI Listing |
Recent Pat Anticancer Drug Discov
January 2025
Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, P.R. China.
Background: BCL-2 was the first gene identified to have antiapoptotic effects, and venetoclax is an oral selective BCL-2 inhibitor, which has great potential in the treatment of patients with acute myeloid leukemia (AML) who are not candidates for intensive therapy. Notably, posaconazole, an oral antifungal drug, is also a strong factor that can affect blood venetoclax concentrations. To the best of our knowledge, the relationship between BCL-2 expression, posaconazole, and venetoclax, as well as their influence on treatment efficacy and the prognosis of patients with AML, has not been reported.
View Article and Find Full Text PDFBackground: Rising nosocomial infections pose high risks, especially for immunocompromised leukemia patients, necessitating targeted research to enhance patient care and outcomes.The objective of this study was to investigate the impact of nosocomial infections (CDI) on patients hospitalized with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML).
Methods: Our study was a retrospective analysis of adult patients hospitalized with a primary diagnosis of ALL or AML, using the Nationwide Inpatient Sample (NIS) database for 2020.
Nat Immunol
January 2025
Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
Hematopoietic stem cells must mitigate myriad stressors throughout their lifetime to ensure normal blood cell generation. Here, we uncover unfolded protein response stress sensor inositol-requiring enzyme-1α (IRE1α) signaling in hematopoietic stem and progenitor cells (HSPCs) as a safeguard against myeloid leukemogenesis. Activated in part by an NADPH oxidase-2 mechanism, IRE1α-induced X-box binding protein-1 (XBP1) mediated repression of pro-leukemogenic programs exemplified by the Wnt-β-catenin pathway.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
July 2024
Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008.
Objectives: Monitoring minimal residual disease (MRD) and timely intervention are effective strategies for preventing relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in adult acute myeloid leukemia (AML). The gene, a pan-leukemia marker, can be used as an indicator for MRD monitoring in AML patients. Currently, there is no unified standard for the intervention timing or treatment threshold based on gene detection after transplantation.
View Article and Find Full Text PDFHaematologica
January 2025
University Clinic Tübingen, Department for Internal Medicine II, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and University Hospital Tübingen.
In acute myeloid leukemia (AML), leukemogenesis depends on cell-intrinsic genetic aberrations and thus, studies on AML require investigations in an in vivo setting as provided by patient derived xenografts (PDX) models. Here we report that, next to leukemic cell characteristics, recipient sex highly influences the outgrowth of AML cells in PDX models, with females being much better repopulated than males in primary as well as secondary transplantation assays. Testosterone may be the more important player since, strikingly, better engraftment was seen in castrated versus control male recipients, while ovariectomy did not significantly impair engraftment in females.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!