Cocaine is one of the most consumed illegal drugs among (young) adults in the European Union and it exerts various acute and chronic negative effects on psychical and physical health. The central mechanism through which cocaine initially leads to improved performance, followed by addictive behavior, has already been intensively studied and includes effects on the homeostasis of the neurotransmitters dopamine, partly mediated via nicotinic acetylcholine receptors, and serotonin. However, effects on the peripheral nervous system, including the enteric nervous system, are much less understood, though a correlation between cocaine consumption and gastrointestinal symptoms has been reported. The aim of the present study was to gain more information on the effects of cocaine on enteric neuronal functions and the underlying mechanisms. For this purpose, functional experiments using an organ bath, Ussing chamber and neuroimaging techniques were conducted on gastrointestinal tissues from guinea pigs. Key results obtained are that cocaine (1) exhibits a stimulating, non-neuronal effect on gastric antrum motility, (2) acutely (but not chronically) diminishes responses of primary cultured enteric neurons to nicotinic and serotonergic stimulation and (3) reversibly attenuates neuronal-mediated intestinal mucosal secretion. It can be concluded that cocaine, among its central effects, also alters enteric neuronal functions, providing potential explanations for the coexistence of cocaine abuse and gastrointestinal complaints.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954635PMC
http://dx.doi.org/10.3390/cells12040577DOI Listing

Publication Analysis

Top Keywords

enteric neuronal
12
neuronal functions
12
cocaine
8
effects cocaine
8
cocaine enteric
8
nervous system
8
effects
6
enteric
5
short- long-term
4
long-term effects
4

Similar Publications

Background And Aims: The enteric nervous system independently controls gastrointestinal function including motility, which is primarily mediated by the myenteric plexus, therefore also playing a crucial role in functional intestinal disorders. Live recordings from human myenteric neurons proved to be challenging due to technical difficulties. Using the neuroimaging technique, we are able to record human colonic myenteric neuronal activity and investigate their functional properties in a large cohort of patients.

View Article and Find Full Text PDF

Gut Neuropathies and Intestinal Motility Disorders.

Neurogastroenterol Motil

January 2025

College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.

Background: The enteric nervous system plays a key role in the coordination of gastrointestinal motility together with sympathetic, parasympathetic, and extrinsic sensory pathways. In some cases, abnormalities in neural activity in these pathways contribute to disorders of gut motility. Where this is associated with damage or death of enteric neurons, usually detected by microscopy, this is considered a gut neuropathy.

View Article and Find Full Text PDF

Introduction: The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine.

View Article and Find Full Text PDF

Gastrointestinal (GI) motility is regulated in a large part by the cells of the enteric nervous system (ENS), suggesting that ENS dysfunctions either associate with, or drive GI dysmotility in patients. However, except for select diseases such as Hirschsprung's Disease or Achalasia that show a significant loss of all neurons or a subset of neurons, our understanding of human ENS histopathology is extremely limited. Recent endoscopic advances allow biopsying patient's full thickness gut tissues, which makes capturing ENS tissues simpler than biopsying other neuronal tissues, such as the brain.

View Article and Find Full Text PDF

The circadian cycle is a fundamental biological rhythm that governs many physiological functions across nearly all living organisms. In the gastrointestinal tract, activities such as gut motility, hormone synthesis, and communication between the gut, central nervous system and microbiome all fluctuate in alignment with the circadian cycle. The enteric nervous system (ENS) is critical for co-ordinating many of these activities, however, how its activity is governed by the circadian cycle remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!