Short tandem repeats (STRs) are units of 1-6 base pairs that occur in tandem repetition to form a repeat tract. STRs exhibit repeat instability, which generates expansions or contractions of the repeat tract. Over 50 diseases, primarily affecting the central nervous system and muscles, are characterized by repeat instability. Longer repeat tracts are typically associated with earlier age of onset and increased disease severity. Environmental exposures are suspected to play a role in the pathogenesis of repeat expansion diseases. Here, we review the current knowledge of mechanisms of environmentally induced repeat instability in repeat expansion diseases. The current evidence demonstrates that environmental factors modulate repeat instability via DNA damage and induction of DNA repair pathways, with distinct mechanisms for repeat expansion and contraction. Of particular note, oxidative stress is a key mediator of environmentally induced repeat instability. The preliminary evidence suggests epigenetic modifications as potential mediators of environmentally induced repeat instability. Future research incorporating an array of environmental exposures, new human cohorts, and improved model systems, with a continued focus on cell-types, tissues, and critical windows, will aid in identifying mechanisms of environmentally induced repeat instability. Identifying environmental modulators of repeat instability and their mechanisms of action will inform preventions, therapies, and public health measures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953593 | PMC |
http://dx.doi.org/10.3390/biomedicines11020515 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Program in Genetics, Molecular, and Cellular Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111.
CAG/CTG repeats are prone to expansion, causing several inherited human diseases. The initiating sources of DNA damage which lead to inaccurate repair of the repeat tract to cause expansions are not fully understood. Expansion-prone CAG/CTG repeats are actively transcribed and prone to forming stable R-loops with hairpin structures forming on the displaced single-stranded DNA (S-loops).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA.
Fragile X syndrome (FXS) is a genetic condition caused by the inheritance of alleles with >200 CGG repeats in the 5' UTR of the fragile X messenger ribonucleoprotein 1 () gene. These full mutation (FM) alleles are associated with DNA methylation and gene silencing, which result in intellectual disabilities, developmental delays, and social and behavioral issues. Mosaicism for both the size of the CGG repeat tract and the extent of its methylation is commonly observed in individuals with the FM.
View Article and Find Full Text PDFCancer Control
January 2025
School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
Introduction: and mutations are frequently detected in lung adenocarcinoma (LUAD). Tumor mutational signature (TMS) determination is an approach to identify somatic mutational patterns associated with pathogenic factors. In this study, through the analysis of TMS, the underlying pathogenic factors of LUAD with and mutations were traced.
View Article and Find Full Text PDFiScience
December 2024
Guangzhou Municipal Key Laboratory of Metabolic Diseases and Reproductive Health, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China.
AT-rich sequence can cause structure variants such as translocations and its instability can be accelerated by replication stresses. When human 16p11.2 or 22q11.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
Microsatellite stable (MSS) colorectal cancer (CRC) is a subtype of CRC that generally exhibits resistance to immunotherapy, particularly immune checkpoint inhibitors such as PD-1 blockade. This study investigates the effects and underlying mechanisms of combining PD-1 blockade with IDO1 inhibition in MSS CRC. Bioinformatics analyses of TCGA-COAD and TCGA-READ cohorts revealed significantly elevated IDO1 expression in CRC tumors, correlating with tumor mutation burden across TCGA datasets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!