Glutathione transferases (GSTs) are ubiquitous key enzymes with different activities as transferases or isomerases. As key detoxifying enzymes, GSTs are expressed in the chemosensory organs. They fulfill an essential protective role because the chemosensory organs are located in the main entry paths of exogenous compounds within the body. In addition to this protective function, they modulate the perception process by metabolizing exogenous molecules, including tastants and odorants. Chemosensory detection involves the interaction of chemosensory molecules with receptors. GST contributes to signal termination by metabolizing these molecules. By reducing the concentration of chemosensory molecules before receptor binding, GST modulates receptor activation and, therefore, the perception of these molecules. The balance of chemoperception by GSTs has been shown in insects as well as in mammals, although their chemosensory systems are not evolutionarily connected. This review will provide knowledge supporting the involvement of GSTs in chemoperception, describing their localization in these systems as well as their enzymatic capacity toward odorants, sapid molecules, and pheromones in insects and mammals. Their different roles in chemosensory organs will be discussed in light of the evolutionary advantage of the coupling of the detoxification system and chemosensory system through GSTs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953322 | PMC |
http://dx.doi.org/10.3390/biom13020322 | DOI Listing |
Sci Rep
January 2025
Laboratory for Regenerative Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan.
Analysis of genome-scale evolution has been difficult in large, endangered animals because opportunities to collect high-quality genetic samples are limited. There is a need for novel field-friendly, cost-effective genetic techniques. This study conducted an exome-wide analysis of a total of 42 chimpanzees (Pan troglodytes) across six African regions, providing insights into population discrimination techniques.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Zoology, University of São Paulo, São Paulo, SP, Brazil.
Animals have evolved numerous mechanisms to perceive and interact with the environment that can be translated into different sensory modalities. However, the genomic and phenotypic features that support sensory functions remain enigmatic for many invertebrates, such as bivalves, an ecologically and economically important taxonomic group. No repertoire of sensory genes has been characterized in bivalves, representing a significant knowledge gap in molluscan sensory biology.
View Article and Find Full Text PDFAggress Behav
January 2025
Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.
Sensory processing of communication stimuli is essential for the survival of organisms across all evolutionary branches. Multimodal signaling, the use of multiple sensory systems is crucial in this process, but little is known about the relative importance of different senses used during aggression. We used the African cichlid fish, Astatotilapia burtoni, to test how visual and chemosensory signals in male-male interactions influence behavior.
View Article and Find Full Text PDFSpecialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium.
View Article and Find Full Text PDFMicroorganisms
November 2024
Key Laboratory of Animal Parasitology of the Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
The study of tick olfaction is relatively new compared to that of insects, and the molecular mechanisms involved remain poorly understood. Despite several potential chemosensory genes identified in multiple tick species, these are yet to be validated through independent functional experiments. In this research, we cloned and analyzed a microplusin-like gene, HlonML-1, and investigated its role in the chemosensory activities of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!