Monitoring rumination activity is considered a useful indicator for the early detection of diseases and metabolic disorders. Accelerometer-based sensor systems provide health alerts based on individual thresholds of rumination times in dairy cows. Detailed knowledge of the relationship between sensor-based rumination times and rumen physiology would help detect conspicuous animals and evaluate the treatment's success. This study aimed to investigate the association between sensor-based health alerts and rumen fluid characteristics in Holstein-Friesian cows at different stages of lactation. Rumen fluid was collected via a stomach tube from 63 pairs of cows with and without health alerts (ALRT vs NALRT). Pairs were matched based on the day of lactation, the number of lactations, and health criteria. Rumen fluid was collected during and after health alerts. The parameters of color, odor, consistency, pH, redox potential, sedimentation flotation time, and the number of protozoa were examined. Results showed differences between both groups in odor, rumen pH, sedimentation flotation time, and protozoan count at the first rumen fluid collection. Within the groups, greater variations in rumen fluid parameters were found for ALRT cows compared to NALRT cows. The interaction between health alert and stage of lactation did not affect the rumen fluid parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952734 | PMC |
http://dx.doi.org/10.3390/ani13040759 | DOI Listing |
Sci Rep
December 2024
College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China.
The aim of this experiment was to investigate the effects of rumen fluid and molasses on the nutrient composition, fermentation quality, and microflora of Caragana korshinskii Kom. The trial included four treatments: a control group (CK) without additives and experimental groups supplemented with 7% rumen fluid (R), 4% molasses (M), and 7% rumen fluid + 4% molasses (RM). 15 days and 60 days of ensiling.
View Article and Find Full Text PDFVet Sci
December 2024
Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico.
The impact of macroalgae species on rumen function remains largely unexplored. This present study aimed to identify the biocompounds of the three types of marine macroalgae described: (Brown), spp. (Lettuce), spp.
View Article and Find Full Text PDFFront Microbiol
December 2024
Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, China.
Yak () is a large ruminant endemic to the Tibetan plateau. The addition of enzyme complexes to feed can significantly improve their growth performance. Therefore, studying the effects of ruminant compound enzyme preparations dosage on yak rumen microorganisms and production performance is crucial to promoting the development of the yak industry.
View Article and Find Full Text PDFJ Anim Sci
December 2024
Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA.
Our objective was to evaluate the effect of a multispecies fungal extract (MFE) on growth performance, apparent total tract digestibility (ATTD), fermentation characteristics, and rumen microbiome composition of beef cattle fed forage-based diets. For experiment 1, ruminally cannulated Angus × SimAngus cows (n = 4; body weight [BW] = 569 ± 21 kg) were used in a randomized crossover design with two 21-d study periods and a 23-d washout period to evaluate the effect of dietary inclusion of a MFE on in situ digestion, ruminal fermentation, and the composition of the rumen microbiome. Treatments consisted of a forage-based diet with or without the inclusion of a MFE.
View Article and Find Full Text PDFAMB Express
December 2024
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, El Cerrillo Piedras Blancas, 50295, Toluca, Estado de México, Mexico.
Reducing greenhouse gas (GHG) emissions from livestock is a crucial step towards mitigating the impact of climate change and improving environmental sustainability in agriculture. This study aimed to evaluate the effects of Yucca schidigera extract, chitosan, and chitosan nanoparticles as feed additives on in vitro GHG emissions and fermentation profiles in ruminal fluid from bulls. Total gas, CH, CO, and HS emissions (up to 48 h), rumen fermentation profiles, and CH conversion efficiency were measured using standard protocols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!