Gait scoring is a useful measure for evaluating broiler production efficiency, welfare status, bone quality, and physiology. The research objective was to track and characterize spatiotemporal and three-dimensional locomotive behaviors of individual broilers with known gait scores by jointly using deep-learning algorithms, depth sensing, and image processing. Ross 708 broilers were placed on a platform specifically designed for gait scoring and manually categorized into one of three numerical scores. Normal and depth cameras were installed on the ceiling to capture top-view videos and images. Four birds from each of the three gait-score categories were randomly selected out of 70 total birds scored for video analysis. Bird moving trajectories and 16 locomotive-behavior metrics were extracted and analyzed via the developed deep-learning models. The trained model gained 100% accuracy and 3.62 ± 2.71 mm root-mean-square error for tracking and estimating a key point on the broiler back, indicating precise recognition performance. Broilers with lower gait scores (less difficulty walking) exhibited more obvious lateral body oscillation patterns, moved significantly or numerically faster, and covered more distance in each movement event than those with higher gait scores. In conclusion, the proposed method had acceptable performance for tracking broilers and was found to be a useful tool for characterizing individual broiler gait scores by differentiating between selected spatiotemporal and three-dimensional locomotive behaviors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952523PMC
http://dx.doi.org/10.3390/ani13040717DOI Listing

Publication Analysis

Top Keywords

gait scores
16
spatiotemporal three-dimensional
12
three-dimensional locomotive
12
locomotive behaviors
12
behaviors individual
8
individual broilers
8
gait scoring
8
gait
6
broilers
5
scores
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!