Mercury, which tends to bioaccumulate and biomagnify in aquatic food webs, poses a potential health risk to wildlife and to consumers of predatory fish in particular. Its concentration in biota can be high even at low environmental concentrations. Therefore, the aim of this study was to determine mercury in both abiotic (water and sediment) and biotic elements (common reed () and fish: pike (), bream () and roach ()) in the context of assessing the pollution of two lakes in Poland and the safety of fish consumers. The possibility of Hg biomagnification in fish was also considered. Mercury was determined by means of cold vapor atomic absorption spectrometry (CVAAS). The concentrations of Hg in water and bottom sediments of Lake Ińsko were lower than in Lake Wisola. In the bottom sediments of both lakes, a positive correlation was found between the Hg content and organic matter. The concentration of mercury in the organs of common reed did not exceed 0.017 mg/kg dry weight (dw), and its distribution can be presented as follows: root > leaves > stems > rhizomes. In fish organs from both lakes, the average mercury content did not exceed 0.086 mg/kg of wet weight (ww) and in most cases it was the highest in pike. Higher values were only observed in the muscles and skin of roach. This indicates a lack of biomagnification in the relationships between planktivorous-predatory and benthivores-predatory fish. Based on the maximum levels of mercury in fish and the calculated parameters, i.e., estimated daily intake (EDI), target hazard quotient (THQ) and tolerable weekly intake (TWI), the muscles of the examined fish were found to be safe for consumption. The average dietary exposure to total mercury (THg) and methylmercury (MeHg) was below 0.3% of the TWI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952536 | PMC |
http://dx.doi.org/10.3390/ani13040697 | DOI Listing |
Mar Pollut Bull
January 2025
Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:
Freshwater product consumption is a major source of mercury (Hg) exposure in China. This study analyzed Hg concentrations in 12,560 samples from 29 provinces across China (2010-2021) and conducted probabilistic health risk assessments across various life stages. The average Hg concentration in China's freshwater products was 40.
View Article and Find Full Text PDFJ Trace Elem Med Biol
January 2025
Department of Epidemiology and Environmental Health, University at Buffalo, USA. Electronic address:
Introduction: Heavy metal exposure has been associated with poor sleep, but little is known about the cumulative associations of multiple metals with sleep duration, particularly among adolescents. This study examined the association of blood lead (Pb), cadmium (Cd), and mercury (Hg) concentrations with sleep duration and possible effect modification by vitamin D.
Methods: The study sample consisted of 16-25-year-olds (n = 2637) from the 2011-2018 National Health and Nutrition Examination Survey.
J Expo Sci Environ Epidemiol
January 2025
Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Background: Preterm birth (PTB) is a common pregnancy complication associated with significant neonatal morbidity. Prenatal exposure to environmental chemicals, including toxic and/or essential metal(loid)s, may contribute to PTB risk.
Objective: We aimed to summarize the epidemiologic evidence of the associations among levels of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), lead (Pb), and zinc (Zn) assessed during the prenatal period and PTB or gestational age at delivery; to assess the quality of the literature and strength of evidence for an effect for each metal; and to provide recommendations for future research.
Environ Res
January 2025
Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:
Biofouling is a common phenomenon caused by waterborne organisms such as bacteria, diatoms, mussels, barnacles, algae, etc., accumulating on the surfaces of engineering structures submerged under water. This leads to corrosion of such surfaces and decreases their moving efficiency.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Construction Engineering, University of Córdoba, E.P.S of Belmez, Avenida de la Universidad s/n, E-14240 Córdoba, Spain.
The findings highlight the potential for broadening the use of shell aggregates in construction applications. This research investigated the viability of incorporating milled seashells as fine sand replacements for natural calcareous sand in the production of self-compacting mortar. These results highlight a promising avenue for coastal industries to reduce waste while enhancing the durability of construction materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!