The European hedgehog is in decline, triggering a need to monitor population dynamics to optimise conservation initiatives directed at this species. By counting periosteal growth lines, we determined the age of 388 dead European hedgehogs collected through citizen science in Denmark. The overall mean age was 1.8 years (1.6 years for females and 2.1 years for males), ranging between 0 and 16 years. We constructed life tables showing life expectancies at 2.1 years for females and 2.6 years for males. We discovered that male hedgehogs were more likely to have died in traffic than females, but traffic-related deaths peaked in July for both sexes. A sex difference was detected for non-traffic deaths, as most males died in July, and most females died in September. We created empirical survivorship curves and hazard curves showing that the risk of death for male hedgehogs remains approximately constant with age. In contrast, the risk of death for females increases with age. Most of the collected road-killed individuals died in rural habitats. The degree of inbreeding did not influence longevity. These new insights are important for preparing conservation strategies for the European hedgehog.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951656PMC
http://dx.doi.org/10.3390/ani13040626DOI Listing

Publication Analysis

Top Keywords

european hedgehogs
8
european hedgehog
8
years females
8
females years
8
years males
8
male hedgehogs
8
risk death
8
years
6
females
5
old-all live
4

Similar Publications

Molecular Identification of Species in Ticks Infesting Hedgehogs ( and ) in North-Western Poland.

Int J Mol Sci

December 2024

Department of Genetics and Genomics, Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland.

The western European hedgehog () and the northern white-breasted hedgehog () are natural hosts of the tick , the vector of tick-borne pathogens such as the bacteria responsible for Lyme disease. The aim of this study was to identify these pathogens in ticks collected from hedgehogs in northwestern Poland and to assess their genetic diversity by molecular analysis of the detected pathogens based on the gene and the intergenic spacer. Among 101 hedgehogs examined, 737 ticks were found on 56 (55.

View Article and Find Full Text PDF

European Hedgehogs as Hosts of Chaphamaparvovirus, Italy.

Animals (Basel)

December 2024

Department of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy.

In 2022, a novel parvovirus was identified from an outbreak of fatal enteritis in weaned European hedgehogs () at a wildlife rescue center in Southern Italy. During sequence analysis, the strain was found to be closely related (90.4% nucleotide identity) to a chaphamaparvovirus (ChPV) discovered in Amur hedgehogs () during a large metaviromic investigation in game animals in China.

View Article and Find Full Text PDF

Urban environments are exposed to a substantial range of anthropic pressures, including chemical exposure. While trace metals and legacy pollutants have been well documented, the extent of wildlife exposure to emerging contaminants has received little attention, in terrestrial mammals. Concentrations of trace elements (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Mn, Pb and Zn) and 48 organic pollutants (Polychlorinated Biphenyls: PCBs, Organochlorine Pesticides: OCPs, Polycyclic Aromatic Hydrocarbons: PAHs, phthalates and pyrethroid pesticides) were measured in tissues of European hedgehogs (Erinaceus europaeus) in southern Sweden.

View Article and Find Full Text PDF

Introduction: Small mammals, especially rodents and bats, are known reservoirs of zoonotic viruses, but little is known about the viromes of insectivorous species including hedgehogs (order Eulipotyphla), which often live near human settlements and come into contact with humans.

Methods: We used high-throughput sequencing and metaviromic analysis to describe the viromes of 21 hedgehogs (Erinaceus sp.) sampled from summer 2022 to spring 2023.

View Article and Find Full Text PDF

The Hedgehog (Hh) signaling pathway is essential for maintaining homeostasis during embryogenesis and in adult tissues. In the liver, dysregulation of this pathway often leads to liver cancer development. Recent studies also suggest that disturbances in the Hh pathway can affect liver metabolism in healthy livers through interactions with other signaling pathways, such as the Wnt/β-catenin pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!