The use of pneumococcal conjugate vaccines has affected the epidemiology and distribution of serotypes causing Invasive Pneumococcal Disease (IPD). The aim of this study was to analyze the evolution of the phenotypical profiles of antimicrobial susceptibility to penicillin (PEN) in all IPD strains isolated in Madrid, Spain, during 2007-2021. In total, 7133 invasive clinical isolates were characterized between 2007 and 2021. Levels of PENR and PNSSDR were 2.0% and 24.2%, respectively. In addition, 94.4% of all the PENR belonged to four serotypes, including 11A (33.6%), 19A (30.8%), 14 (20.3%) and 9V (9.8%). All the strains of serotype 11A, which is a non-PCV13 serotype, were detected after the year 2011. Serotypes 6C, 15A, 23B, 24F, 35B, 19F, 16F, 6B, 23F, 24B, 24A, 15F and a limited number of strains of serogroups 16 and 24 (non-typed at serotype level) were associated with PNSSDR ( < 0.05). PNSSDR strains of non-PCV13 serotypes 11A, 24F, 23B, 24B, 23A and 16F were more frequent from 2014 to 2021. The changes in serotype distribution associated with the use of conjugate vaccines had caused in our region the emergence of non-PCV13 pneumococcal strains with different PENR or PNSSDR patterns. The emergence of serotype 11A resistant to penicillin as the most important non-PCV13 serotype is a worrisome event with marked relevance from the clinical and epidemiological perspective.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952450 | PMC |
http://dx.doi.org/10.3390/antibiotics12020289 | DOI Listing |
Viruses
January 2025
Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia.
is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by . phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with infection.
View Article and Find Full Text PDFViruses
January 2025
Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé P.O. Box 3077, Cameroon.
Islatravir (ISL) is a novel antiretroviral that inhibits HIV-1 reverse transcriptase translocation. The M184V mutation, known to reduce ISL's viral susceptibility in vitro, could arise from prolonged exposure to nucleoside reverse transcriptase inhibitors (NRTI) (3TC). This study evaluated the predictive efficacy of ISL and identified potentially active antiretrovirals in combination among treatment-experienced patients in Cameroon, where NRTIs (3TC) have been the backbone of ART for decades now.
View Article and Find Full Text PDFViruses
December 2024
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, CA 92093-0657, USA.
Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral-host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
Amidst the pervasive threat of bacterial afflictions, the imperative for advanced antibiofilm surfaces with robust antimicrobial efficacy looms large. This study unveils a sophisticated ultrasonic synthesis method for cellulose nanocrystals (CNCs, 10-20 nm in diameter and 300-900 nm in length) and their subsequent application as coatings on flexible substrates, namely cotton (CC-1) and membrane (CM-1). The cellulose nanocrystals showed excellent water repellency with a water contact angle as high as 148° on the membrane.
View Article and Find Full Text PDFPathogens
January 2025
Elanco Animal Health, Greenfield, IN 46140, USA.
This study evaluated the minimum inhibitory concentration (MIC) of pradofloxacin against various swine respiratory pathogens, including , , , , and (), associated with disease in swine. This research was conducted in two phases: the initial phase examined isolates from the lungs that could be either commensal or pathogenic, while the second phase focused on systemic strains that spread from the respiratory tract to the brain. The pradofloxacin MIC values of the second phase were within the MIC range of the initial phase, with MIC and MIC values highlighting its potential as an effective antimicrobial agent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!