The present study was designed to evaluate the functional potential of common duckweed ( L.) as a source of bioactive compounds of nutraceutical interest. The untargeted profiling of the bioactive components of common duckweed was carried out through ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS), in parallel with assessing in vitro antioxidant and enzymatic inhibition properties. The optimization of extraction parameters was determined using the response surface methodology (RSM) through a 3-factor central composite design. The process parameters included extraction temperature, % of ethanol, and ultrasound power, while the response variables were the phenolic content (considering each main phenolic class), total glucosinolates, total carotenoids, the antioxidant potential, and enzyme inhibition activities. The results revealed that common duckweed was a rich source of carotenoids and total flavonoids (mainly flavones and flavonols), followed by phenolic acids, low-molecular-weight phenolics, and glucosinolates. Interestingly, the total flavones, total flavonols and total carotenoid equivalents showed the highest and most positive correlation values with the bioactive properties measured. Finally, the combined RSM approach and unsupervised statistics allowed us to point out the pivotal impact of ethanol percentage in the extraction solvent to recover the highest amounts of bioactive compounds efficiently.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952736PMC
http://dx.doi.org/10.3390/antiox12020313DOI Listing

Publication Analysis

Top Keywords

common duckweed
16
response surface
8
surface methodology
8
functional potential
8
potential common
8
bioactive compounds
8
total
6
combination untargeted
4
untargeted metabolomics
4
metabolomics response
4

Similar Publications

The dual impact of tire wear microplastics on the growth and ecological interactions of duckweed Lemna minor.

Environ Pollut

January 2025

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia; Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic. Electronic address:

Tire wear microplastics (TWMs) are continuously generated during driving and are subsequently released into the environment, where they pose potential risks to aquatic organisms. In this study, the effects of untreated, hydrated, and aged (in stream water) TWMs on the growth, root development, photosynthesis, electron transport system (ETS) activity, and energy-rich molecules of duckweed Lemna minor were investigated. The results indicated that untreated and aged TWMs have the most pronounced negative effects on Lemna minor, as evidenced by reduced growth and impaired root development.

View Article and Find Full Text PDF

Clay-catalyzed ozonation of Norfloxacin - Effects of metal cation and degradation rate on aqueous media toxicity towards Lemna minor.

Chemosphere

January 2025

Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal, Québec, H3C 1K3, Canada. Electronic address:

Article Synopsis
  • Norfloxacin was ozonized in clay suspensions to study its toxicity on Lemna minor, which helps assess antibiotic impact in environments with clay.
  • The study found that norfloxacin causes toxicity in Lemna minor through oxidative stress, worsened by ozonation, affecting growth and chlorophyll levels.
  • Results indicate that the type of clay catalyst and the oxidation process influence the toxicity outcomes, revealing the potential formation of more harmful byproducts from the antibiotic.
View Article and Find Full Text PDF

Optimisation of Dairy Soiled Water as a Novel Duckweed Growth Medium.

Plants (Basel)

January 2025

School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 TK30 Cork, Ireland.

As a result of intensive agriculture, large quantities of liquid wastewaters are produced. Dairy soiled water (DSW) is produced in large volumes during the milking process of cattle. It comprises essential plant nutrients such as nitrogen, phosphorus, and potassium.

View Article and Find Full Text PDF

D1-104/3 and C31-106/3 differentially modulate the antioxidative response of duckweed ( L.) to salt stress.

Front Microbiol

December 2024

Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Article Synopsis
  • Duckweed is a valuable model for studying plant responses to stress, specifically focusing on how bacterial strains D1-104/3 and C31-106/3 influence growth and stress responses under salt stress (10 and 100 mM NaCl).
  • The experiment measured various physiological parameters after 14 days, revealing that both bacterial strains colonized duckweeds and affected growth differently, with C31-106/3 showing a longer doubling time but reducing chlorosis.
  • Results indicated that both bacterial strains enhanced antioxidant capacity and reduced oxidative stress, with significant differences in their impacts on proline, chlorophyll, and enzyme activities, particularly at higher salt concentrations.
View Article and Find Full Text PDF

Numerous management methods are deployed to try to mitigate the destructive impact of weedy and invasive populations. Yet, such management practices may cause these populations to inadvertently evolve in ways that have consequence on their invasiveness. To test this idea, we conducted a two-step field mesocosm experiment; we evolved genetically diverse populations of the duckweed to targeted removal management and then tested the impact of that evolution in replicated invasions into experimental resident communities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!