Antioxidants are various types of compounds that represent a link between biology and chemistry. With the development of theoretical and computational methods, antioxidants are now being studied theoretically. Here, a novel method is presented that aims to reduce the estimated wall times for DFT calculations that result in the same or higher degree of accuracy in the second derivatives over energy than is the case with the regular computational route (i.e., optimizing the reaction system at a lower model and then recalculating the energies at a higher level of theory) by applying the inversion of theory level to the universal chemical scavenger model, i.e., phenol. The resulting accuracy and wall time obtained with such a methodological setup strongly suggest that this methodology could be generally applied to antioxidant thermodynamics for some costly DFT methods with relative absolute deviation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952401 | PMC |
http://dx.doi.org/10.3390/antiox12020282 | DOI Listing |
Nat Commun
January 2025
School of Physics, Beihang University, Haidian District, Beijing, China.
Topology is being widely adopted to understand and to categorize quantum matter in modern physics. The nexus of topology orders, which engenders distinct quantum phases with benefits to both fundamental research and practical applications for future quantum devices, can be driven by topological phase transition through modulating intrinsic or extrinsic ordering parameters. The conjoined topology, however, is still elusive in experiments due to the lack of suitable material platforms.
View Article and Find Full Text PDFBy utilizing the time inversion of radiation from spatial dipole arrays, we propose a method for constructing the spatial lattice-type skyrmion arrays under 4 focusing conditions, including Néel-, Bloch-, and Anti-skyrmions/merons. The Richards-Wolf vector diffraction theory is applied to analyze the radiation field emitted by dipole arrays, aiming to determine the incident field required under a high numerical aperture (NA=0.95).
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
February 2025
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.
In this study, we present a new N-derivative of L-phenylalanine with 2-naphthaldehyde (PN), obtained by the Schiff base formation procedure and its subsequent reduction. This compound was crystallized as a zwitterion {2-[(naphthalen-2-ylmethyl)azaniumyl]-3-phenylpropanoate, CHNO}, as an anion in a sodium salt (catena-poly[[diaquasodium(I)-di-μ-aqua] 2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoate monohydrate], {[Na(HO)](CHNO)·HO}), as a cation in a chloride salt [(1-carboxy-2-phenylethyl)(naphthalen-2-ylmethyl)azanium chloride acetic acid monosolvate, CHNO·Cl·CHCOOH], and additionally acting as a ligand in the pentacoordinated zinc compound aquabis{2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoato-κO}zinc(II), [Zn(CHNO)(HO)] or [Zn(PN)(HO)], denoted (PN-Zn), with the amino acid derivative in its carboxylate form.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Postgraduate Program in Process and Technologies Engineering (PGEPROTEC), University of Caxias do Sul, Caxias do Sul 95070-560, RS, Brazil.
The starting point for the preparation of polymeric membranes by phase inversion is having a thermodynamically stable solution. Ternary diagrams for the polymer, solvent, and non-solvent can predict this stability by identifying the phase separation and describing the thermodynamic behavior of the membrane formation process. Given the lack of data for the ternary system water (HO)/hydrochloric acid (HCℓ)/polyamide 66 (PA66), this work employed the Flory-Huggins theory for the construction of the ternary diagrams (HO/HCℓ/PA66 and HO/formic acid (FA)/PA66) by comparing the experimental data with theoretical predictions.
View Article and Find Full Text PDFNanoscale
January 2025
Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile.
We propose and characterize a novel two-dimensional material, 2D-CRO, derived from bulk calcium-based ruthenates (CROs) of the Ruddlesden-Popper family, CaRuO ( = 1 and 2). Using density functional theory, we demonstrate that 2D-CRO maintains structural stability down to the monolayer limit, exhibiting a tight interplay between structural and electronic properties. Notably, 2D-CRO displays altermagnetic behavior, characterized by zero net magnetization and strong spin-dependent phenomena, stabilized through dimensionality reduction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!