Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study presents a multilayer in vitro human skin platform to quantitatively relate predicted spatial time-temperature history with measured tissue injury response. This information is needed to elucidate high-temperature, short-duration burn injury kinetics and enables determination of relevant input parameters for computational models to facilitate treatment planning. Multilayer in vitro skin platforms were constructed using human dermal keratinocytes and fibroblasts embedded in collagen I hydrogels. After three seconds of contact with a 50-100 °C burn tip, ablation, cell death, apoptosis, and HSP70 expression were spatially measured using immunofluorescence confocal microscopy. Finite element modeling was performed using the measured thermal characteristics of skin platforms to determine the temperature distribution within platforms over time. The process coefficients for the Arrhenius thermal injury model describing tissue ablation and cell death were determined such that the predictions calculated from the time-temperature histories fit the experimental burn results. The activation energy for thermal collagen ablation and cell death was found to be significantly lower for short-duration, high-temperature burns than those found for long-duration, low-temperature burns. Analysis of results suggests that different injury mechanisms dominate at higher temperatures, necessitating burn research in the temperature ranges of interest and demonstrating the practicality of the proposed skin platform for this purpose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952576 | PMC |
http://dx.doi.org/10.3390/bioengineering10020265 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!