Brassinin (BSN), a potent phytoalexin found in cruciferous vegetables, has been found to exhibit diverse anti-neoplastic effects on different cancers. However, the impact of BSN on chronic myelogenous leukemia (CML) cells and the possible mode of its actions have not been described earlier. We investigated the anti-cytotoxic effects of BSN on the KBM5, KCL22, K562, and LAMA84 CML cells and its underlying mechanisms of action in inducing programmed cell death. We noted that BSN could induce apoptosis, autophagy, and paraptosis in CML cells. BSN induced PARP cleavage, subG1 peak increase, and early apoptosis. The potential action of BSN on autophagy activation was confirmed by an LC3 expression and acridine orange assay. In addition, BSN induced paraptosis through increasing the reactive oxygen species (ROS) production, mitochondria damage, and endoplasmic reticulum (ER) stress. Moreover, BSN promoted the activation of the MAPK signaling pathway, and pharmacological inhibitors of this signaling pathway could alleviate all three forms of cell death induced by BSN. Our data indicated that BSN could initiate the activation of apoptosis, autophagy, and paraptosis through modulating the MAPK signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953140PMC
http://dx.doi.org/10.3390/biology12020307DOI Listing

Publication Analysis

Top Keywords

signaling pathway
16
apoptosis autophagy
12
autophagy paraptosis
12
mapk signaling
12
cml cells
12
bsn
10
chronic myelogenous
8
myelogenous leukemia
8
cell death
8
bsn induced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!