Limited N-Glycan Processing Impacts Chaperone Expression Patterns, Cell Growth and Cell Invasiveness in Neuroblastoma.

Biology (Basel)

Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University Greenville, 600 Moye Boulevard, Greenville, NC 27834, USA.

Published: February 2023

Enhanced N-glycan branching is associated with cancer, but recent investigations supported the involvement of less processed N-glycans. Herein, we investigated how changes in N-glycosylation influence cellular properties in neuroblastoma (NB) using rat N-glycan mutant cell lines, NB_1(-), NB_1(-) and NB_1(-), as well as the parental cell line NB_1. The two earlier mutant cells have compromised N-acetylglucosaminyltransferase-I (GnT-I) and GnT-II activities. Lectin blotting showed that NB_1(-) cells had decreased activity of GnT-III compared to NB_1. ESI-MS profiles identified N-glycan structures in NB cells, supporting genetic edits. NB_1(-) had the most oligomannose N-glycans and the greatest cell invasiveness, while NB_1(-) had the fewest and least cell invasiveness. The proliferation rate of NB_1 was slightly slower than NB_1(-), but faster than NB_1(-) and NB_1(-). Faster proliferation rates were due to the faster progression of those cells through the G1 phase of the cell cycle. Further higher levels of oligomannose with 6-9 Man residues indicated faster proliferating cells. Human NB cells with higher oligomannose N-glycans were more invasive and had slower proliferation rates. Both rat and human NB cells revealed modified levels of ER chaperones. Thus, our results support a role of oligomannose N-glycans in NB progression; furthermore, perturbations in the N-glycosylation pathway can impact chaperone systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953357PMC
http://dx.doi.org/10.3390/biology12020293DOI Listing

Publication Analysis

Top Keywords

cell invasiveness
12
nb_1- nb_1-
12
oligomannose n-glycans
12
nb_1-
9
nb_1- faster
8
proliferation rates
8
human cells
8
cell
7
cells
7
limited n-glycan
4

Similar Publications

Background: Abundant research indicates that increased extracellular matrix (ECM) stiffness significantly enhances the malignant characteristics of hepatocellular carcinoma (HCC) cells. Plectin, an essential cytoskeletal linker protein, has recently emerged as a promoter of cancer progression, particularly in the context of cancer cell invasion and metastasis. However, the responsiveness of plectin to changes in ECM stiffness and its impact on HCC progression remain unclear.

View Article and Find Full Text PDF

Background: LINC00312 has shown to play a suppressive role in the development and progression of non-small cell lung cancer (NSCLC). However, the expression pattern and diagnostic role of circulating LINC00312 in NSCLC remain to be confused.

Methods: A total of 319 patients diagnosed with NSCLC and 180 healthy volunteers were enrolled from the First Affiliated Hospital of Huzhou University between January, 2022 and December, 2023.

View Article and Find Full Text PDF

A localized surface plasmon resonance (LSPR) sensor based on tapered optical fiber (TOF) using hollow gold nanoparticles (HAuNPs) for measuring the refractive index (RI) is presented. This optical fiber sensor is a good candidate for a label-free RI biosensor. In practical biosensors, bioreceptors are immobilized on nanoparticles (NPs) that only absorb specific biomolecules.

View Article and Find Full Text PDF

Polyphenolic plant compounds possess nutritional and pro-healthy potential, reducing the risk of auto-inflammatory and neoplastic diseases. However, their interference with the progression of thyroid gland dysfunctions has remained largely unaddressed. For this purpose, we combined the analyses of phenolic content and antioxidative activity with the thyroid peroxidase (TPO), lipoxygenase (LOX), xanthine oxidase (XO) and cyclooxygenase-2 (COX-2) activity assays, isobolographic approach and the estimation of thyroid cancer cells' proliferation and motility in vitro.

View Article and Find Full Text PDF

The significance of ALKBH5 in erasing mRNA methylation in mRNA biogenesis, decay, and translation control has emerged as a prominent research focus. Additionally, ALKBH5 is associated with the development of numerous human cancers. However, it remains unclear whether ALKBH5 regulates the growth and metastasis of papillary thyroid carcinoma (PTC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!