In tomato plants, spp. have been increasingly associated with several wilt and rot diseases that are responsible for severe yield losses. Here, we present a real-time PCR TaqMan MGB (Minor Groove Binder) assay to detect and discriminate spp. from other fungal species that affect tomato plants. The methodology used is based on the selective amplification of the internal transcribed spacer (ITS) region of spp. This assay revealed to be highly specific and sensitive for species, targeting only the 29 isolates from the 45 tested isolates associated to tomato diseases. Sensitivity was assessed with serial dilutions of genomic DNA, with the limit of detection of 3.05 pg. An absolute DNA quantification method was also established, based on the determination of the absolute number of target copies. Finally, the effectiveness of the assay was successfully validated with the detection and quantification of spp. in potentially infected tomato plants from an experimental field and in control plants grown under controlled conditions. The established methodology allows a reliable, sensitive, and reproducible estimation of accumulation in infected tomato plants, gaining new insights for disease control and providing an additional tool in the screening of resistant plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953614 | PMC |
http://dx.doi.org/10.3390/biology12020268 | DOI Listing |
Chem Biodivers
January 2025
Chuxiong Normal University, Academy of Science and Technology, Chuxiong Normal University, Chuxiong, 675000,China, No. 456 Luchengnan Road, chuxiong, Academy of Science and Technology, 651000, chuxiong, CHINA.
Gray mold disease is caused by B. cinerea, which could severely reduce the production yield and quality of tomatoes. To explore more potential fungicides with new scaffolds for controlling the gray mold disease, ten aldehydes-thiourea derivatives were designed, synthesized and assayed for inhibitory activity against three plant pathogenic fungi.
View Article and Find Full Text PDFThe conclusions of the European Food Safety Authority (EFSA) following the peer review of the initial risk assessments carried out by the competent authorities of the rapporteur Member State, the Netherlands, and co-rapporteur Member State, France, for the pesticide active substance spinosad and the assessment of applications for maximum residue levels (MRLs) are reported. The context of the peer review was that required by Commission Implementing Regulation (EU) No 844/2012. The conclusions were reached on the basis of the evaluation of the representative uses of spinosad as insecticide on bulb/dry onions, maize (fodder and grain), sweet corn, grapes (table and wine), lettuce, potato, aubergine, pepper and tomato.
View Article and Find Full Text PDFHeliyon
January 2025
Water Resources Research Center, Arba Minch Water Technology Institute, Arba Minch University, Arba Minch, Ethiopia.
This study investigates the integrative effects of irrigation water management allowable depletion (MAD), furrow irrigation methods (FIM), and nitrogen fertilizer application rate (NFAR) on tomato yield components. These yield components include marketable, unmarketable, and total yield. Additionally, the study examines crop agronomy components such as plant height, number of branches, and root depth in semi-arid Southern Ethiopia.
View Article and Find Full Text PDFData Brief
February 2025
Tecnológico Nacional de México/Instituto Tecnológico de Culiacán, División de Estudios de Posgrado e Investigación, Juan de Dios Batíz 310. Col. Guadalupe, 80220 Culiacán, Sinaloa, Mexico.
A dataset of aerial photographs acquired with an Unmanned Aerial Vehicle (UAV) DJI Phantom 4 Pro is presented for monitoring a cherry tomato ( var. ) crop in Navolato, Mexico. Seven photogrammetric flights were carried out to assess the plant growth using a Mapir Survey 3W multispectral camera.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China.
Background: In the realm of plant diseases, those caused by fungi and oomycetes are particularly challenging to manage, resulting in significant economic losses. There exist diverse active substances in natural products and developing them into fungicides holds great significance. At the initial phase of our research, we discovered that Syringa pinnatifolia extract demonstrates broad-spectrum inhibitory activity against phytopathogenic fungi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!