Heavy metals are dangerous systemic toxicants that can induce multiple organ damage, primarily by inducing oxidative stress and mitochondrial damage. Clinoptilolite is a highly porous natural mineral with a magnificent capacity to eliminate metals from living organisms, mainly by ion-exchange and adsorption, thus providing detoxifying, antioxidant and anti-inflammatory medicinal effects. The in vivo efficiency and safety of the oral administration of clinoptilolite in its activated forms, tribomechanically activated zeolite (TMAZ) and Panaceo-Micro-Activated (PMA) zeolite, as well as the impact on the metallic biodistribution, was examined in healthy female rats. Concentration profiles of Al, As, Cd, Co, Pb, Ni and Sr were measured in rat blood, serum, femur, liver, kidney, small and large intestine, and brain using inductively coupled plasma mass spectrometry (ICP-MS) after a 12-week administration period. Our results point to a beneficial effect of clinoptilolite materials on the concentration profile of metals in female rats supplemented with the corresponding natural clinoptilolite materials, TMAZ and PMA zeolite. The observed decrease of measured toxicants in the kidney, femur, and small and large intestine after three months of oral intake occurred concomitantly with their most likely transient release into the bloodstream (serum) indicative of a detoxification process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952783PMC
http://dx.doi.org/10.3390/biology12020193DOI Listing

Publication Analysis

Top Keywords

concentration profile
8
profile metals
8
pma zeolite
8
female rats
8
small large
8
large intestine
8
clinoptilolite materials
8
clinoptilolite
5
impact long-term
4
long-term clinoptilolite
4

Similar Publications

Alzheimer's disease (AD) and mild cognitive impairment (MCI) are a serious global public health problem. The aim of this study was to analyze the key molecular pathological mechanisms that occur in early AD progression as well as MCI. Expression profiling data from brain homogenates of 8 normal volunteers, and 6 patients with prodromal AD who had developed MCI were analyzed, and the data were obtained from GSE12685.

View Article and Find Full Text PDF

Efficacy and Safety of Mydriatic Microdrops for Retinopathy of Prematurity Screening: The MyMiROPS Randomized Clinical Trial.

JAMA Ophthalmol

December 2024

Second Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece.

Importance: Commercial mydriatics administered in preterm infants during retinopathy of prematurity (ROP) screening have been associated with various cardiorespiratory and gastrointestinal adverse events.

Objective: To examine whether microdrops of a combined mixture of 1.67% phenylephrine and 0.

View Article and Find Full Text PDF

This study presents the development of an analytical characterization strategy tailored to end products derived from an alfalfa ()-based biorefinery with particular emphasis on protein concentrates and phenolic-enriched fractions. Our approach began with a comprehensive full-factorial experimental design aimed at optimizing the extraction process, taking care to design a biocompatible extraction protocol. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) techniques were used to characterize the molecular profile of the extracts.

View Article and Find Full Text PDF

Background: Observational and genetic causal studies have shown an association between high concentrations of remnant cholesterol and increased risk of ischemic heart disease. However, findings from randomized intervention trials that reduced plasma triglycerides, a surrogate marker of remnant cholesterol, have been conflicting. The exact mechanisms by which remnant cholesterol contributes to atherosclerosis and, ultimately, ischemic heart disease remain incompletely understood.

View Article and Find Full Text PDF

Elevated Toxicity and High-Risk Impacts of Small Polycyclic Aromatic Hydrocarbon Clusters on Microbes Compared to Large Clusters.

Environ Sci Technol

December 2024

Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan China.

Polycyclic aromatic hydrocarbons (PAHs) are widespread contaminants that can accumulate in microorganisms, posing significant ecological risks. While previous studies primarily focused on PAH concentrations, the impacts of PAH self-clustering have been largely overlooked, which will lead to inaccurate assessments of their ecological risks. This study evaluates the toxic effects of four prevalent PAH clusters on microbes with an emphasis on comparing the cluster sizes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!