Background: The FAKHRAVAC®, an inactivated SARS-CoV-2 vaccine, was assessed for safety and immunogenicity in a phase II trial.
Methods: We did a phase II, single-centered, randomized, double-blind, placebo-controlled clinical trial of the FAKHRAVAC inactivated SARS-CoV-2 vaccine on adults aged 18 to 70. The two parallel groups received two intramuscular injections of either a 10-µg vaccine or a placebo at 2-week intervals. The participants' immunogenicity responses and the occurrence of solicited and unsolicited adverse events were compared over the study period of up to 6 months. Immunogenicity outcomes include serum neutralizing antibody activity and specific IgG antibody levels.
Results: Five hundred eligible participants were randomly (1:1) assigned to vaccine or placebo groups. The median age of the participants was 36 years, and 75% were male. The most frequent local adverse reaction was tenderness (21.29% after the first dose and 8.52% after the second dose), and the most frequent systemic adverse reaction was headache (11.24% after the first dose and 8.94% after the second dose). Neutralizing antibody titers two and four weeks after the second injection in the vaccine group showed about 3 and 6 times increase compared to the placebo group (GMR = 2.69, 95% CI 2.32-3.12, N:309) and (GMR = 5.51, 95% CI 3.94-8.35, N:285). A four-fold increase in the neutralizing antibody titer was seen in 69.6% and 73.4% of the participants in the vaccine group two and four weeks after the second dose, respectively. Specific ELIZA antibody response against a combination of S1 and RBD antigens 4 weeks after the second injection increased more than three times in the vaccine compared to the placebo group (GMR = 3.34, 95% CI 2.5-4.47, N:142).
Conclusions: FAKHRAVAC® is safe and induces a significant humoral immune response to the SARS-CoV-2 virus at 10-µg antigen dose in adults aged 18-70. A phase III trial is needed to assess the clinical efficacy.
Trial Registration: Trial Registry Number: Ref., IRCT20210206050259N2 ( http://irct.ir ; registered on 08/06/2021).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951829 | PMC |
http://dx.doi.org/10.1186/s12879-023-08079-1 | DOI Listing |
Nat Commun
December 2024
Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
The immune escape capacities of XBB variants necessitate the authorization of vaccines with these antigens. In this study, we produce three recombinant trimeric proteins from the RBD sequences of Delta, BA.5, and XBB.
View Article and Find Full Text PDFArch Razi Inst
June 2024
Department of Basic Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran.
Serum levels of vitamin D (VD) are inversely correlated with the incidence or severity of COVID-19. This study aimed to investigate the effects of inactivated COVID-19 virus (ICoV-19) immunization on VD levels, as well as biochemical and hematological parameters in adult male Sprague-Dawley rats. Twenty rats were randomly divided into two groups of 10: the control group (group I) and the ICoV-19-receiving group (group II).
View Article and Find Full Text PDFVirulence
December 2025
Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghais, China.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread rapidly, leading to an Omicron outbreak in Shanghai in mid-December after adjustments to the Coronavirus Disease 2019 (COVID-19) control strategy. To investigate the impact of COVID-19 infection among hypothyroid patients, we gathered data on the hypothyroid outpatients with COVID-19 infection during this time at the Thyroid Disease Center (TDC) of Shanghai Central Hospital. Patients were divided into two groups based on whether their hypothyroidism was caused by Hashimoto's Thyroiditis (HT): the HT and the non-HT group.
View Article and Find Full Text PDFAutophagy
December 2024
Department of Cell and Molecular Biology, Stockholm, Sweden.
Viral proteases play critical roles in the host cell and immune remodeling that allows virus production. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) papain-like protease (PLpro) encoded in the large nonstructural protein 3 (Nsp3) also possesses isopeptidase activity with specificity for ubiquitin and ISG15 conjugates. Here, we interrogated the cellular interactome of the SARS-CoV-2 PLpro catalytic domain to gain insight into the putative substrates and cellular functions affected by the viral deubiquitinase.
View Article and Find Full Text PDFACS Catal
December 2024
Departments of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States.
The 3-chymotrypsin-like protease (3CL-PR; also known as Main protease) of SARS-CoV-2 is a cysteine protease that is the target of the COVID-19 drug, Paxlovid. Here, we report for 3CL-PR, the pH-rate profiles of a substrate, an inhibitor, affinity agents, and solvent kinetic isotope effects (sKIEs) obtained under both steady-state and pre-steady-state conditions. "Bell-shaped" plots of log( / ) vs pH for the substrate (Abz)SAVLQ*SGFRK(Dnp)-NH and p vs pH for a peptide aldehyde inhibitor demonstrated that essential acidic and basic groups of p = 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!