Background noise due to nonspecific binding of biomolecules on the assay substrates is one of the most common challenges that limits the sensitivity of microarray-based immunoassays. Background signal intensity usually increases when complex biological fluids are used because they have a combination of molecules and vesicles that can adsorb onto substrate surfaces. Blocking strategies coupled with surface chemistries can reduce such nonspecific binding and improve assay sensitivity. In this paper, we conducted a systematic optimization of blocking strategies on a variety of commonly used substrates for protein measurement in complex biofluids. Four blocking strategies (BSA, non-fat milk, PEG, and a protein-free solution) coupled with four surface chemistries (3-glycidoxypropyltrimethoxysilane (GPS), poly-L-lysine (PLL), aminoalkylsilane (AAS), and nitrocellulose (NC)) were studied for their effect on background, microspot, and net signal intensities. We have also explored the effect that these blocking strategies have when proteins in complex samples (plasma, serum, cell culture media, and EV lysate) are measured. Irregular spot morphology could affect signal extraction using automated software. We found that the microspots with the best morphology were the ones printed on GPS glass surfaces for all immunoassays. On NC membrane, the protein-based blocking strategies yielded the highest net fluorescent intensity with the antigen contained in PBS, plasma, serum, and serum-free cell culture media. Differently, with EV lysate samples, Pierce™ protein-free blocker yielded the best net signal intensity on both GPS and NC surfaces. The choice of blocking strategies highly depends on the substrate. Moreover, the findings discovered in this study are not limited to microarray-based immunoassays but can provide insights for other assay formats.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-023-04614-wDOI Listing

Publication Analysis

Top Keywords

blocking strategies
24
microarray-based immunoassays
12
nonspecific binding
8
signal intensity
8
coupled surface
8
surface chemistries
8
net signal
8
plasma serum
8
cell culture
8
culture media
8

Similar Publications

Pd-Catalyzed Asymmetric Synthesis of Chiral 2-Trifluoromethyl-4-(indol-3-yl)-4-chromene Derivatives.

J Org Chem

January 2025

State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.

This paper presents a new strategy for the construction of the chiral 4-chromene skeleton. A series of chiral 2-trifluoromethyl-4-(indol-3-yl)-4-chromenes were synthesized in moderate to good yields (60-92%) with excellent enantioselectivity (up to 97% ee) through the palladium-catalyzed asymmetric condensation of 2-chromenes and indoles. These trifluoromethylated, stereochemically rich building blocks hold potential value in medicinal chemistry.

View Article and Find Full Text PDF

Fluorescence polarization assays to study carbohydrate-protein interactions.

Org Biomol Chem

January 2025

Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, Americo Vespucio, 49, 41092 Sevilla, Spain.

Fluorescence polarization (FP) is a useful technique to study the interactions between carbohydrates and proteins in solution, by using standard equipment and minimal sample consumption. Here, we will review the most recent FP-based approaches in this field, including the study of carbohydrate-lectin, carbohydrate-enzyme and glycosaminoglycan-protein interactions. Advantages and limitations of this methodology will be discussed.

View Article and Find Full Text PDF

Aim: Young people with childhood-onset motor disabilities face unique challenges in understanding and managing their condition. This study explored how they learnt about their condition.

Method: A descriptive qualitative study was conducted in 2023-2024 at a Swiss paediatric neurorehabilitation unit.

View Article and Find Full Text PDF

Surface immobilization of single atoms on heteroatom-doped carbon nanospheres through phenolic-mediated interfacial anchoring for highly efficient biocatalysis.

Chem Sci

January 2025

BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China

Single-atom catalysts (SACs) dispersed on support materials exhibit exceptional catalytic properties that can be fine-tuned through interactions between the single atoms and the support. However, selectively controlling the spatial location of single metal atoms while simultaneously harmonizing their coordination environment remains a significant challenge. Here, we present a phenolic-mediated interfacial anchoring (PIA) strategy to prepare SACs with Fe single atoms anchored on the surface of heteroatom-doped carbon nanospheres.

View Article and Find Full Text PDF

The aim of this study was to determine the effect of the weaning calves at 2 ages (early vs. late) and 2 weaning paces (abrupt over 3 d vs. gradual over 14 d) on plasma oxylipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!