Coronavirus has an impact on millions of lives and has been added to the important pandemics that continue to affect with its variants. Since it is transmitted through the respiratory tract, it has had significant effects on public health and social relations. Isolating people who are COVID positive can minimize the transmission, therefore several exams are proposed to detect the virus such as reverse transcription-polymerase chain reaction (RT-PCR), chest X-Ray, and computed tomography (CT). However, these methods suffer from either a low detection rate or high radiation dosage, along with being expensive. In this study, deep neural network-based model capable of detecting coronavirus from only coughing sound, which is fast, remotely operable and has no harmful side effects, has been proposed. The proposed multi-branch model takes M el Frequency Cepstral Coefficients (MFCC), S pectrogram, and C hromagram as inputs and is abbreviated as MSCCov19Net. The system is trained on publicly available crowdsourced datasets, and tested on two unseen (used only for testing) clinical and non-clinical datasets. Experimental outcomes represent that the proposed system outperforms the 6 popular deep learning architectures on four datasets by representing a better generalization ability. The proposed system has reached an accuracy of 61.5 % in Virufy and 90.4 % in NoCoCoDa for unseen test datasets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955529 | PMC |
http://dx.doi.org/10.1007/s11517-023-02803-4 | DOI Listing |
Pain
January 2025
Innovation, Implementation and Clinical Translation (IIMPACT) in Health, University of South Australia Adelaide, SA, Australia.
Guideline-based care for chronic pain is challenging to deliver in rural settings. Evaluations of programs that increase access to pain care services in rural areas report variable outcomes. We conducted a realist review to gain a deep understanding of how and why such programs may, or may not, work.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent chronic liver condition characterized by excessive hepatic fat accumulation. Early diagnosis is crucial as NAFLD can progress to more severe conditions like steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma without timely intervention. While liver biopsy remains the gold standard for NAFLD assessment, abdominal ultrasound (US) imaging has emerged as a widely adopted non-invasive modality due to convenience and low cost.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Department of Information Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Ramapuram, Chennai, 600089, India.
Brain tumours are one of the most deadly and noticeable types of cancer, affecting both children and adults. One of the major drawbacks in brain tumour identification is the late diagnosis and high cost of brain tumour-detecting devices. Most existing approaches use ML algorithms to address problems, but they have drawbacks such as low accuracy, high loss, and high computing cost.
View Article and Find Full Text PDFMed Biol Eng Comput
January 2025
Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, 230031, Anhui, China.
The identification and categorization of circulating tumor cells (CTCs) in peripheral blood are imperative for advancing cancer diagnostics and prognostics. The intricacy of various CTCs subtypes, coupled with the difficulty in developing exhaustive datasets, has impeded progress in this specialized domain. To date, no methods have been dedicated exclusively to overcoming the classification challenges of CTCs.
View Article and Find Full Text PDFAbdom Radiol (NY)
January 2025
Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital (The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine), Shenzhen, China.
Purpose: Intra-pancreatic fat deposition (IPFD) is closely associated with the onset and progression of type 2 diabetes mellitus (T2DM). We aimed to develop an accurate and automated method for assessing IPFD on multi-echo Dixon MRI.
Materials And Methods: In this retrospective study, 534 patients from two centers who underwent upper abdomen MRI and completed multi-echo and double-echo Dixon MRI were included.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!