In this study, geopolymers were prepared using ladle furnace slag (LFS) and fly ash (FA), and hydrothermal treatment was then used to synthesize bulk zeolite molecular sieves with gismondine, zeolite-P1, and sodalite phases. The effect of the synthesis conditions on the crystalline phases of the zeolite molecular sieves was investigated by XRD. The results showed that the best zeolite molecular sieves were prepared with an LFS: FA ratio of 4: 6, a curing temperature of 40 °C, a curing time of 12 h, a sodium silicate modulus (Ms) of 1.4, a NaOH concentration of 4 mol/L, a hydrothermal temperature of 120 °C, and a hydrothermal time of 12 h. On this basis, the products were analyzed by SEM, N adsorption, and FT-IR. The results showed that the synthesized zeolite molecular sieves had mesoporous properties, and the degree of polymerization and cross-linking of the silica-aluminate gel were enhanced after hydrothermal treatment. In addition, the formation mechanism of the zeolite molecular sieves was explored through the changes of the silica-alumina during zeolite formation. This paper is the first to use the hydrothermal conversion of zeolite molecular sieves from LFS-FA based polymers to provide some guidance for the resource utilization of LFS and FA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9958088PMC
http://dx.doi.org/10.1038/s41598-023-30282-yDOI Listing

Publication Analysis

Top Keywords

zeolite molecular
24
molecular sieves
24
gismondine zeolite-p1
8
zeolite
8
ladle furnace
8
furnace slag
8
fly ash
8
hydrothermal treatment
8
molecular
6
sieves
6

Similar Publications

Exploring the multifaceted roles of metal-organic frameworks in ecosystem regulation.

J Mater Chem B

January 2025

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.

Achieving microecological balance is a complex environmental challenge. This is because the equilibrium of microecological systems necessitates both the eradication of harmful microorganisms and preservation of the beneficial ones. Conventional materials predominantly target the elimination of pathogenic microorganisms and often neglect the protection of advantageous microbial species.

View Article and Find Full Text PDF

Selective production of olefins from methanol over a heteroatomic SAPO-34 zeolite.

Sci Bull (Beijing)

January 2025

Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK; College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China. Electronic address:

The methanol-to-olefins (MTO) process has the potential to bridge future gaps in the supply of sustainable lower olefins. Promoting the selectivity of propylene and ethylene and revealing the catalytic role of active sites are challenging goals in MTO reactions. Here, we report a novel heteroatomic silicoaluminophosphate (SAPO) zeolite, SAPO-34-Ta, which incorporates active tantalum(V) sites within the framework to afford an optimal distribution of acidity.

View Article and Find Full Text PDF

Selectivity control by zeolites during methanol-mediated CO hydrogenation processes.

Chem Soc Rev

January 2025

Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.

The thermocatalytic conversion of CO with green or blue hydrogen into valuable energy and commodity chemicals such as alcohols, olefins, and aromatics emerges as one of the most promising strategies for mitigating global warming concerns in the future. This process can follow either a CO-modified Fischer-Tropsch synthesis route or a methanol-mediated route, with the latter being favored for its high product selectivity beyond the Anderson-Schulz-Flory distribution. Despite the progress of the CO-led methanol-mediated route over bifunctional metal/zeolite catalysts, challenges persist in developing catalysts with both high activity and selectivity due to the complexity of CO hydrogenation reaction networks and the difficulty in controlling C-O bond activation and C-C bond coupling on multiple active sites within zeolites.

View Article and Find Full Text PDF

Direct Methane to Methanol Conversion: An Overview of Non-Syn Gas Catalytic Strategies.

Chem Rec

January 2025

Bioinspired & Biomimetic Inorganic Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673601, India.

Direct methane to methanol conversion is a dream reaction in industrial chemistry, which takes inspiration from the biological methanol production catalysed by methane monooxygenase enzymes (MMOs). Over the years, extensive studies have been conducted on this topic by bioengineering the MMOs, and tailoring methods to isolate the MMOs in the active form. Similarly, remarkable achievements have been noted in other methane activation strategies such as the use of heterogeneous catalysts or molecular catalysts.

View Article and Find Full Text PDF

Porous nanomaterials have shown great promise in many desalination applications. Zeolite nanotubes, featuring abundant but inhomogeneous nanopores on their surface, have been recently synthesized in experiments; however, their capacity for desalination is not yet understood. In this work, we use molecular dynamics simulations to investigate the capability of assembled zeolite nanotube membranes to perform in desalination applications due to their inherent multiscale porous properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!