Embedding patient-reported outcomes at the heart of artificial intelligence health-care technologies.

Lancet Digit Health

Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; Data-Enabled Medical Technologies and Devices Hub, University of Birmingham, Birmingham, UK; National Institute for Health and Care Research Applied Research Collaboration West Midlands, University of Birmingham, Birmingham, UK; Health Data Research UK, London, UK; National Institute for Health and Care Research Biomedical Research Centre for Ophthalmology, Moorfields Hospital London NHS Foundation Trust and Institute of Ophthalmology, University College London, London, UK; National Institute for Health and Care Research Birmingham-Oxford Blood and Transplant Research Unit in Precision Transplant and Cellular Theraputics, Birmingham, UK; National Institute for Health and Care Research Birmingham Biomedical Research Centre, Birmingham, UK; National Institute for Health and Care Research Surgical Reconstruction and Microbiology Centre, Birmingham, UK.

Published: March 2023

Integration of patient-reported outcome measures (PROMs) in artificial intelligence (AI) studies is a critical part of the humanisation of AI for health. It allows AI technologies to incorporate patients' own views of their symptoms and predict outcomes, reflecting a more holistic picture of health and wellbeing and ultimately helping patients and clinicians to make the best health-care decisions together. By positioning patient-reported outcomes (PROs) as a model input or output we propose a framework to embed PROMs within the function and evaluation of AI health care. However, the integration of PROs in AI systems presents several challenges. These challenges include (1) fragmentation of PRO data collection; (2) validation of AI systems trained and validated against clinician performance, rather than outcome data; (3) scarcity of large-scale PRO datasets; (4) inadequate selection of PROMs for the target population and inadequate infrastructure for collecting PROs; and (5) clinicians might not recognise the value of PROs and therefore not prioritise their adoption; and (6) studies involving PRO or AI frequently present suboptimal design. Notwithstanding these challenges, we propose considerations for the inclusion of PROs in AI health-care technologies to avoid promoting survival at the expense of wellbeing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2589-7500(22)00252-7DOI Listing

Publication Analysis

Top Keywords

patient-reported outcomes
8
artificial intelligence
8
health-care technologies
8
pros
5
embedding patient-reported
4
outcomes heart
4
heart artificial
4
intelligence health-care
4
technologies integration
4
integration patient-reported
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!