Aflatoxin B (AFB) is a mycotoxin known to impair human and animal health. It is also believed to have a deleterious effect on ruminal nutrient digestibility under in vitro batch culture systems. The objective of this study was to evaluate the effects of increasing the dose of AFB on ruminal dry matter and nutrient digestibility, fermentation profile, and N flows using a dual-flow continuous culture system fed a diet formulated for lactating dairy cows. Eight fermenter vessels were used in a replicated 4 × 4 Latin square design with 10 d periods (7 d adaptation and 3 d sample collection). Treatments were randomly applied to fermenters on diet DM basis: (1) 0 μg of AFB/kg of DM (Control); (2) 50 μg of AFB/kg of DM (AF50); (3) 100 μg of AFB/kg of DM (AF100); and (4) 150 μg of AFB/kg of DM (AF150). Treatments did not affect nutrient digestibility, fermentation, and N flows. Aflatoxin B concentration in ruminal fluid increased with dose but decreased to undetectable levels after 4 h post-dosing. In conclusion, adding incremental doses of AFB did not affect ruminal fermentation, digestibility of nutrients, and N flows in a dual-flow continuous culture system fed diets formulated for lactating dairy cows.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964898 | PMC |
http://dx.doi.org/10.3390/toxins15020090 | DOI Listing |
Background: Bile acids (BA) are steroids regulating nutrient absorption, energy metabolism, and mitochondrial function, and serve as important signaling molecules with a role in the gut-brain axis. The composition of BAs in humans changes with diet type and health status, which is well documented with a few known bile acids. In this study, we leveraged a new BA-specific spectral library curated in the Dorrestein lab at UCSD to expand the pool of detected BAs in Alzheimer-related LC-MS/MS datasets and provide links to dietary profiles and AD markers.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
January 2025
Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Provincial Science and Technology Innovation Center of Pig industry Technology, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
Background: There is a growing focus on using various plant-derived agricultural by-products to increase the benefits of pig farming, but these feedstuffs are fibrous in nature. This study investigated the relationship between dietary fiber physicochemical properties and feedstuff fermentation characteristics and their effects on nutrient utilization, energy metabolism, and gut microbiota in growing pigs.
Methods: Thirty-six growing barrows (47.
Sci Rep
January 2025
College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China.
Tibetan donkeys inhabit the harsh environment of the Qinghai-Tibet Plateau. Research on serum metabolites related to their high-altitude adaptation is limited compared to other livestock. We used liquid chromatography-mass spectrometry (LC-MS) to analyze serum samples from healthy adult donkeys in Shigatse, Changdu, and Dezhou to evaluate the effects of high altitudes on serum metabolites.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Gynecology and Gynecological Oncology, Research Laboratories, University Hospital Bonn, Bonn, Germany
The human bowel is exposed to numerous biotic and abiotic external noxious agents. Accordingly, the digestive tract is frequently involved in malfunctions within the organism. Together with the commensal intestinal flora, it regulates the immunological balance between inflammatory defense processes and immune tolerance.
View Article and Find Full Text PDFBioresour Bioprocess
December 2024
Production Systems Unit, Grasslands and Sustainable Agriculture Group, Natural Resources Institute Finland (Luke), Maaninka, FI-71750, Finland.
Thermal processes are emerging as promising solutions to recovering phosphorus and other nutrient elements from anaerobic digestates. The feasibility of nutrient element recovery depends largely on the fates of nutrient elements and heavy metals during thermal processing. This study assesses the partitioning of macronutrients (N, P, K, Na, Ca and Mg) and heavy metals (Zn, Cu, and Mn) between condensed and gaseous phases during thermal conversion of cattle slurry digestates in gas atmospheres of pyrolysis, combustion, and gasification processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!