Wastewater treatment plants are among the main hotspots for the release of antibiotic resistance genes (ARGs) into the environment. ARGs in treated wastewater can be found in the intracellular DNA (iDNA) and in the extracellular DNA (eDNA). In this study, we investigated the fate and the distribution (either in eDNA or in iDNA) of ARGs in the treated wastewaters pre and post-disinfection by shotgun metagenomics. The richness of the intracellular resistome was found to be higher than the extracellular one. However, the latter included different high risk ARGs. About 11% of the recovered metagenome assembled genomes (MAGs) from the extracted DNA was positive for at least one ARG and, among them, several were positive for more ARGs. The high-risk ARG bacA was the most frequently detected gene among the MAGs. The disinfection demonstrated to be an important driver of the composition of the antibiotic resistomes. Our results demonstrated that eDNA represents an important fraction of the overall ARGs, including a number of high-risk ARGs, which reach the environment with treated wastewater effluents. The studied disinfections only marginally affect the whole antibiotic resistome but cause important shifts from intracellular to extracellular DNA, potentially threating human health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.121325DOI Listing

Publication Analysis

Top Keywords

extracellular dna
12
antibiotic resistance
8
resistance genes
8
treated wastewaters
8
args treated
8
treated wastewater
8
args
7
extracellular
4
dna includes
4
includes fraction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!