Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neures.2023.02.007 | DOI Listing |
Natl Sci Rev
January 2025
CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
State Key Laboratory of Cardiology and Medical Innovation Center, Department of Reproductive Medicine Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
The overactivation of transposable elements (TEs) is a significant threat to male reproduction, particularly during the delicate process of spermatogenesis. Here, we report that zinc finger protein ZCCHC8-a key component of the nuclear exosome targeting (NEXT) complex that is involved in ribonucleic acid (RNA) surveillance-is required for TE silencing during spermatogenesis. Loss of ZCCHC8 results in delayed meiotic progression and reduced production of round spermatids (RS).
View Article and Find Full Text PDFPediatr Neurol
November 2024
Division of Rehabilitation Psychology Neuropsychology, Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan. Electronic address:
Background: Neonatal seizures are common with acute brain injury. Up to 25% of survivors develop postneonatal epilepsy. We hypothesized postneonatal epilepsy diagnosed by age 24 months would increase risk for early markers of neurobehavioral disorders than acute provoked neonatal seizures alone.
View Article and Find Full Text PDFChem Soc Rev
December 2024
Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
It is a great challenge for vehicles to satisfy the increasingly stringent emission regulations for pollutants and greenhouse gases. Throughout the history of the development of vehicle emission control technology, catalysts have always been in the core position of vehicle aftertreatment. Aiming to address the significant demand for synergistic control of pollutants and greenhouse gases from vehicles, this review provides a panoramic view of emission control technologies and key aftertreatment catalysts for vehicles using fossil fuels (gasoline, diesel, and natural gas) and carbon-neutral fuels (hydrogen, ammonia, and green alcohols).
View Article and Find Full Text PDFNatl Sci Rev
December 2024
Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
Although adeno-to-squamous transition (AST) has been observed in association with resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) in clinic, its causality, molecular mechanism and overcoming strategies remain largely unclear. We here demonstrate that squamous transition occurs concomitantly with TKI resistance in PC9-derived xenograft tumors. Perturbation of squamous transition via DNp63 overexpression or knockdown leads to significant changes in TKI responses, indicative of a direct causal link between squamous transition and TKI resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!