Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The disposal of soybean pulp (okara) (∼14 M tons annually) represents a global concern. α-ketoisocaproate (KIC) is an intrinsic l-leucine metabolite boosting mammalian muscle growth and has great potential in animal husbandry. However, the use of pure l-leucine (5000 USD/kg) for KIC (22 USD/kg) bioproduction is cost-prohibitive in practice, while okara rich in l-leucine (10%) could serve as an economical alternative. Following the concept of a circular bioeconomy, we managed to develop a cost-efficient platform to valorize okara into KIC. In this study, proteolytic Bacillus subtilis strain 168 capable of utilizing okara as a comprehensive substrate was employed as the whole-cell biocatalyst for KIC bioproduction. First, we elucidated the function of genes involved in KIC downstream metabolism in strain 168, including those encoding 2-oxoisovalerate dehydrogenase (bkdAA), 2-oxoisovalerate decarboxylase (bkdAB), enoyl-CoA hydratase (fadB), and bifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (fadN). Among those KIC downstream metabolizing mutants of strain 168, the 2-oxoisovalerate decarboxylase gene knockout strain (ΔbkdAB) was found to have a better accumulation of KIC. To further improve the KIC yield, a soluble l-amino acid deaminase (LAAD) from Proteus vulgaris was heterologously expressed in the ΔbkdAB strain and a ∼50% conversion of total l-leucine contained in okara was catalyzed into KIC, along with a ∼50% reduction of CO emission compared to the wild-type cultures. Altogether, this renovated biocatalytic system provides an alternative platform to valorize okara for producing value-added chemicals in an eco-friendly manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.138200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!