A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Potential ecotoxicity of substrate-enriched zinc oxide nanoparticles to Physalaemus cuvieri tadpoles. | LitMetric

Potential ecotoxicity of substrate-enriched zinc oxide nanoparticles to Physalaemus cuvieri tadpoles.

Sci Total Environ

Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil. Electronic address:

Published: May 2023

Although the ecotoxicological effects of ZnO nanoparticles (ZnO NPs) have already been reported in different taxa, little is known about their impacts on amphibians. Thus, we aimed to evaluate the potential effects of exposure of Physalaemus cuvieri tadpoles to substrates enriched with ZnO NPs (and with its ionic counterpart, Zn, ZnCl - both at 100 mg/kg) previously used in the cultivation of Panicum maximum (Guinea grass). We showed that although exposure for 21 days did not impact the survival, growth, and development of tadpoles, we noted an increase in the frequency of erythrocyte nuclear abnormalities in the "ZnCl" and "ZnONP" groups, which was associated with suppression of antioxidant activity in the animals (inferred by SOD and CAT activity and DPPH free radical scavenging capacity). In the tadpoles of the "ZnONP" group, we also noticed a reduction in creatinine and bilirubin levels, alpha-amylase activity, and an increase in alkaline phosphatase activity. But the treatments did not alter the activity of the enzymes lactate dehydrogenase and gamma-glutamyl-transferase and total protein and carbohydrate levels. On the other hand, we report a cholinesterase and hypotriglyceridemic effect in the "ZnCl" and "ZnONP" groups. Zn bioaccumulation in animals, from ZnO NPs, from Zn released from them, or both, has been associated with causing these changes. Finally, principal component analysis (PCA) and the values of the "Integrated Biomarker Response" index revealed that the exposure of animals to substrates enriched with ZnO NPs caused more pronounced effects than those attributed to its ionic counterpart. Therefore, our study reinforces the need to consider the environmental risks of using these nanomaterials for agricultural purposes for amphibians.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.162382DOI Listing

Publication Analysis

Top Keywords

zno nps
16
physalaemus cuvieri
8
cuvieri tadpoles
8
substrates enriched
8
enriched zno
8
ionic counterpart
8
"zncl" "znonp"
8
"znonp" groups
8
zno
5
activity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!