In the present study, we describe a facile strategy for the easy removal of the heavy metal ion, Pb (II) using biosynthesized copper ferrite (CuFeO) Nanoparticles (Nps) prepared via a cost-effective and eco-friendly method usingleaf extract. The structural characterization was performed using UV-Visible, FT-IR, XRD, XPS, TG, SEM - EDS and TEM techniques. Various characterization techniques showed that the biosynthesized CuFeOnanoparticles have spherical shape with minimum aggregation and possess a size range between 7 and 16 nm. Batch experiments were carried out to analyze the adsorption efficiency of CuFeONps by varying different experimental conditions such as pH, adsorbent dose and initial metal ion concentration. From the atomic absorption spectroscopy results, the optimum removal efficiency (99.69%) occurred at a contact time of 90 min in the solution having pH 6 with 0.06 g of nanoadsorbent. The experimental data were analyzed using adsorption isotherm and fitted with kinetic models. In the present study, we report the the highest removal efficiency of 99.69% for Pb (II) ions with minimum experimental parameters which is greater than other similar reported studies. The novel CuFeOnanosorbent synthesized in the present study is highly effective in eliminating toxic pollutants. They also possess outstanding recycling characteristics for the effective removal of Pb (II) ions from aqueous media.This cost-effective and ecofriendly strategy could be utilized for addressing the emerging water contamination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/acbeb7 | DOI Listing |
Food Chem
January 2025
College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, People's Republic of China. Electronic address:
Herein, we synthesized a novel injectable porous magnetic hydrogel (MHG) at room temperature using carboxymethyl chitosan (CMCS), polydopamine (PDA), sodium alginate (SA), polyethyleneimine (PEI) and copper ferrite (CuFeO) as building blocks. The CMCS and SA as monomers provided good film-forming and anti-fouling properties for MHG. The PDA-coated CuFeO as a cross-linking agent improved the homogeneity, adsorption and electrocatalytic performance of MHG, but also generated a macroporous hydrogel structure which was beneficial for sensing applications.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Agia Paraskevi, Athens 15310, Greece. Electronic address:
In this study, a hydroxylamine (HA)-enhanced magnetic spinel catalyst CuFeO-activated peroxymonosulfate (PMS) system (CuFeO/PMS/HA) was constructed to degrade Sulfamethoxazole (SMX). Results from experiments and theoretical calculations indicated that active species generation mechanism involved the direct activation of PMS by HA, the redox cycles acceleration on the surface of CuFeO by HA, and the synergistic action of the low valence Fe and Cu species in CuFeO for PMS activation. The efficacy of other organic pollutants removal was further validated in bio-treated landfill leachate through removal performance and toxicity assessment.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, 36 Baochubei Road, Hangzhou, 310012, People's Republic of China.
The increasing economic damage caused by terrestrial gastropods, especially the Monacha cartusiana (M. cartusiana) land snail, to the agricultural sector requires a diligent and continuous search for new materials and alternatives for the control operations. In this piece of work, a magnetically separable molluscicide with high effectiveness green Barium-Cerium-Copper ferrite/TiO (Ba-Ce-CuFO/TiO) nanocomposite was greenly prepared using Eichhornia plant aqueous extract and characterized using different techniques.
View Article and Find Full Text PDFDiscov Nano
January 2025
Department of Chemical Engineering, Military Technical College (MTC), Cairo, Egypt.
The world is now facing a water scarcity crisis due to waste, pollution, and uneven distribution of freshwater resources, which are limited. Thus, the creation of innovative, economical, and effective methods for purifying water is crucial. Here, the photo-assisted degradation of methylene blue (MB) dye under visible light and UV was achieved by using RGO photocatalyst loaded with ZnCuFeO in three different loaded 10%, 20%, and 30% called MRGO 10, MRGO 20, and MRGO 30.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200082, China.
As emerging contaminants, antibiotic-resistant bacteria (ARBs) and antibiotic-resistant genes (ARGs) pose a serious threat to human health and ecological security. Here, a reduced graphene oxide and g-CN co-doped copper ferrite (rGO-CNCF) were synthesized. The composite material was characterized using XRD, FTIR, XPS, SEM-EDS, TEM, and DRS analysis methods, and a visible-light-assisted rGO-CNCF-activated PMS system was constructed for the removal of ARB and ARGs in water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!