We theoretically study a moiré superlattice geometry consisting of mirror-symmetric twisted trilayer graphene surrounded by identical transition metal dichalcogenide layers. We show that this setup allows us to switch on or off and control the spin-orbit splitting of the Fermi surfaces via application of a perpendicular displacement field D_{0} and explore two manifestations of this control: first, we compute the evolution of superconducting pairing with D_{0}; this features a complex admixture of singlet and triplet pairing and, depending on the pairing state in the parent trilayer system, phase transitions between competing superconducting phases. Second, we reveal that, with application of D_{0}, the spin-orbit-induced spin textures exhibit vortices which lead to "Möbius fermi surfaces" in the interior of the Brillouin zone: diabatic electron trajectories, which are predicted to dominate quantum oscillation experiments, require encircling the Γ point twice, making their Möbius nature directly observable. Further, we show that the superconducting order parameter inherits the unconventional, Möbius spin textures. Our findings suggest that this system provides a promising experimental avenue for systematically studying the impact of spin-orbit coupling on the multitude of topological and correlated phases in near-magic-angle twisted trilayer graphene.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.130.066001DOI Listing

Publication Analysis

Top Keywords

fermi surfaces
8
twisted trilayer
8
trilayer graphene
8
spin textures
8
tunable superconductivity
4
superconductivity möbius
4
möbius fermi
4
surfaces inversion-symmetric
4
inversion-symmetric twisted
4
twisted van
4

Similar Publications

Understanding plasmon damping in gold nanorods (AuNRs) is crucial for optimizing their use in photochemical processes and biosensing. This study used dark-field microscopy and spectroscopy to explore plasmon damping in single AuNRs on graphene monolayers (AuNR@GL) with pyridine derivatives as adsorbates. The Au-graphene heterostructure caused a Fermi-level downshift, making graphene a dominant electron acceptor.

View Article and Find Full Text PDF

The fundamental characteristics of collective interactions in topological band structures can be revealed by the exploration of charge screening in topological materials. In particular, distinct anisotropic screening behaviors are predicted to occur in Dirac nodal line semimetals (DNLSMs) due to their peculiar anisotropic low-energy dispersion. Despite the recent extensive theoretical research, experimental observations of exotic charge screening in DNLSMs remain elusive, which is partly attributed to the coexisting trivial bands near the Fermi energy.

View Article and Find Full Text PDF

Atomic Manipulation on 2D Sumanene for Precise Fermi Level Positioning in Ultrafast High-Capacity Alkali Metal Batteries.

Nano Lett

January 2025

State Key Laboratory of Structural Analysis for Industrial Equipment & School of Physics, Dalian University of Technology, Dalian 116024 People's Republic of China.

Article Synopsis
  • A sumanene monolayer with a unique Kagome-like lattice features two flat bands and two Dirac cones, which can be designed using carbon clusters.
  • First-principles simulations show that surface charge doping can effectively adjust the Fermi level between these bands, allowing for the transformation of the semiconducting monolayer into a semimetal using Li/Na/K atoms.
  • This doped sumanene exhibits high theoretical storage capacity, rapid charge capability, and exceptional structural stability, making it an attractive anode material for alkali-metal batteries.
View Article and Find Full Text PDF

Energy-level rich nanorings hybridizing Ag, Au and AgCl as high-performance SERS substrate for numerous molecules.

Talanta

January 2025

MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China. Electronic address:

The current surface-enhanced Raman scattering (SERS) substrates typically feature a single energy level, posing challenges in coordinating electromagnetic enhancement (EM) and chemical enhancement (CM), thereby limiting the sensitive detection of numerous crucial target molecules. In this study, novel aggregated nanorings (a-NRs) hybridizing Ag, Au and AgCl are constructed as SERS substrates. On one hand, the obtained a-NRs exhibit robust localized surface plasmon resonance absorption, whose wavelength can be tuned to match three commonly used laser wavelengths (532, 633 and 785 nm) to gain strong EM effect.

View Article and Find Full Text PDF

Because of its dimensional characteristics, two-dimensional (2D) materials exhibit many special properties. The key to researching their features is to prepare high-quality larger-area monolayer 2D materials. Metal-assisted mechanical exfoliation method offers the possibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!