Lymphocyte deficiency alters the transcriptomes of oligodendrocytes, but not astrocytes or microglia.

PLoS One

Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, Los Angeles, California, United States of America.

Published: February 2023

Though the brain was long characterized as an immune-privileged organ, findings in recent years have shown extensive communications between the brain and peripheral immune cells. We now know that alterations in the peripheral immune system can affect the behavioral outputs of the central nervous system, but we do not know which brain cells are affected by the presence of peripheral immune cells. Glial cells including microglia, astrocytes, oligodendrocytes, and oligodendrocyte precursor cells (OPCs) are critical for the development and function of the central nervous system. In a wide range of neurological and psychiatric diseases, the glial cell state is influenced by infiltrating peripheral lymphocytes. However, it remains largely unclear whether the development of the molecular phenotypes of glial cells in the healthy brain is regulated by lymphocytes. To answer this question, we acutely purified each type of glial cell from immunodeficient Rag2-/- mice. Interestingly, we found that the transcriptomes of microglia, astrocytes, and OPCs developed normally in Rag2-/- mice without reliance on lymphocytes. In contrast, there are modest transcriptome differences between the oligodendrocytes from Rag2-/- and control mice. Furthermore, the subcellular localization of the RNA-binding protein Quaking, is altered in oligodendrocytes. These results demonstrate that the molecular attributes of glial cells develop largely without influence from lymphocytes and highlight potential interactions between lymphocytes and oligodendrocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956607PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0279736PLOS

Publication Analysis

Top Keywords

peripheral immune
12
glial cells
12
immune cells
8
central nervous
8
nervous system
8
microglia astrocytes
8
glial cell
8
rag2-/- mice
8
cells
7
oligodendrocytes
5

Similar Publications

Objective: The progress made in cancer immunology has led to the development of innovative therapeutic strategies. However, despite these advances, the superficial characteristics of immune cells have been frequently overlooked: This oversight may be attributed to a limited understanding of the intricate relationships between immune cells and their microenvironment. This study seeks to address this limitation by comprehensively examining cell size and granularity in breast cancer (BC) patients and healthy donors (HD).

View Article and Find Full Text PDF

Tofacitinib Treatment for Active Dermatomyositis and Anti-synthetase Syndrome: A Prospective Cohort Pilot Study.

Rheumatology (Oxford)

January 2025

Department of Rheumatology and Immunology and Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, 100044, China.

Objectives: The objective of this study was to evaluate the efficacy and safety of tofacitinib in the treatment of active dermatomyositis (DM) and anti-synthetase syndrome (ASS).

Methods: Tofacitinib was administered at a dose of 5 mg twice daily to patients who exhibited inadequate response to conventional treatments. The primary end point was the reduction of T follicular helper (Tfh) cells at week 24.

View Article and Find Full Text PDF

Background: The diagnosis of gastric carcinoma (GC) is essential for improving clinical outcomes. However, the biomarkers currently used for GC screening are not ideal.

Aim: To explore the diagnostic implications of the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammatory index (SII) for GC.

View Article and Find Full Text PDF

Desmoplastic melanoma is a rare and distinct subtype of cutaneous melanoma, it presents diagnostic challenges due to the lack of specific clinical features and overlapping histopathological characteristics with other malignancies, which necessitate careful clinicopathological correlation and advanced immunohistochemical profiling. While surgical excision remains the cornerstone of treatment, advances in precision medicine, particularly immune checkpoint inhibitors, have shown promise in improving outcomes for unresectable and metastatic desmoplastic melanoma. We present a case study involving a 52-year-old woman misdiagnosed with a malignant peripheral nerve sheath tumor and later identified as desmoplastic melanoma through re-evaluation of histopathological and immunohistochemical findings.

View Article and Find Full Text PDF

functional validation of anti-CD19 chimeric antigen receptor T cells expressing lysine-specific demethylase 1 short hairpin RNA for the treatment of diffuse large B cell lymphoma.

Front Immunol

January 2025

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!