Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Low-cost and efficient dynamic monitoring of surface salinization information is critical in arid and semi-arid regions, we conducted a remote sensing inversion exercise for soil salinity in the Bosten Lake watershed in Xinjiang, Northwest China, with a total area of about 43,930 km2, a typical watershed in an arid area. Sentinel MSI and Landsat OLI data were combined with measured soil salinity data in July 2020, and optimal combination bands were selected based on characteristic bands to create a grid search-support vector machine (GS-SVM) inversion model of soil salt content. The maximum value of soil salt content in the Bosten Lake watershed was 11.8 g/kg. The minimum value was 0.41 g/kg, and the average value was 4.77 g/kg, soil salinization is serious. The results of previous studies were applied to the estimation of salt content in Bosten Lake watershed and could not meet the monitoring requirements of the study area, R2 < 0.3. The GS-SVM soil salinity monitoring model was established based on the optimal DI, RI, and NDI remote sensing indexes for the Bosten Lake watershed. After model verification, it was found that the optimal model of image data was the Landsat OLI first-derivative model with R2 of 0.64, RMSE of 3.12, and RPD of 1.64, indicating that the prediction ability of the model was high. We used the first-order derivative model of Landsat OLI data to map the soil salt content in the Bosten Lake watershed in arid area, and found that soil salt content in most of the study area was between 10 and 20 g/kg, indicating severe salinization. This study not only reveals the distribution characteristics of salinization in Bosten Lake watershed, but also provides a scientific basis for soil salinization monitoring in Central Asia to lay a foundation for further soil salinization monitoring in arid areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955642 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0273738 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!