This paper proposes a new Hepatocellular Carcinoma (HCC) classification method utilizing a hyperspectral imaging system (HSI) integrated with a light microscope. Using our custom imaging system, we have captured 270 bands of hyperspectral images of healthy and cancer tissue samples with HCC diagnosis from a liver microarray slide. Convolutional Neural Networks with 3D convolutions (3D-CNN) have been used to build an accurate classification model. With the help of 3D convolutions, spectral and spatial features within the hyperspectral cube are incorporated to train a strong classifier. Unlike 2D convolutions, 3D convolutions take the spectral dimension into account while automatically collecting distinctive features during the CNN training stage. As a result, we have avoided manual feature engineering on hyperspectral data and proposed a compact method for HSI medical applications. Moreover, the focal loss function, utilized as a CNN cost function, enables our model to tackle the class imbalance problem residing in the dataset effectively. The focal loss function emphasizes the hard examples to learn and prevents overfitting due to the lack of inter-class balancing. Our empirical results demonstrate the superiority of hyperspectral data over RGB data for liver cancer tissue classification. We have observed that increased spectral dimension results in higher classification accuracy. Both spectral and spatial features are essential in training an accurate learner for cancer tissue classification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959324PMC
http://dx.doi.org/10.3390/jimaging9020025DOI Listing

Publication Analysis

Top Keywords

focal loss
12
loss function
12
cancer tissue
12
hepatocellular carcinoma
8
convolutional neural
8
neural networks
8
imaging system
8
convolutions spectral
8
spectral spatial
8
spatial features
8

Similar Publications

In chick embryos prior to primitive streak formation, the outermost extraembryonic region, known as the area opaca (AO), was generally thought to act only by providing nutrients and mechanical support to the embryo. Just internal to the AO is a ring of epiblast called the marginal zone (MZ), separating the former from the inner, area pellucida epiblast. The MZ does not contribute cells to any part of the embryo but is involved in determining the position of primitive streak formation from the adjacent area pellucida epiblast.

View Article and Find Full Text PDF

Objective: The personal experiences of breastfeeding healthcare workers may influence the quality of breastfeeding support provided. This study explored the breastfeeding experiences of nurses and support staff in South India. Materials and Methods: A qualitative exploratory study using focus group discussions (FGDs) was conducted among nurses and support staff of a newly established tertiary care hospital in South India.

View Article and Find Full Text PDF

Centrioles play central roles in ciliogenesis and mitotic spindle assembly. Once assembled, centrioles exhibit long-term stability, a property essential for maintaining numerical control. How centriole stability is achieved and how it is lost in certain biological contexts are still not completely understood.

View Article and Find Full Text PDF

Argonaute proteins are best known for their role in microRNA-mediated post-transcriptional gene silencing. Here, we show that AGO3 and AGO4, but not AGO2, localize to the sex chromatin of pachytene spermatocytes where they are required for transcriptional silencing of XY-linked genes, known as Meiotic Sex Chromosome Inactivation (MSCI). Using an mouse, we show that AGO3 and AGO4 are key regulators of spermatogenesis, orchestrating expression of meiosis-related genes during prophase I while maintaining silencing of spermiogenesis genes.

View Article and Find Full Text PDF

Temporal regulation of gene expression is required for developmental transitions, including differentiation, proliferation, and morphogenesis. In the nematode , heterochronic microRNAs (miRNAs) regulate the temporal expression of genes that promote animal development. The heterochronic miRNAs lin-4 and let-7 are required during different stages of larval development and are associated with the miRNA-specific Argonaute ALG-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!