Research has been looking into neural pathophysiology of post-traumatic stress disorder (PTSD) and dynamic functioning connectivity (dFC) applying resting state functional magnetic resonance imaging (rs-fMRI). Previous studies showed that PTSD related impairments are associated with alterations distributed across different brain regions and disorganized functional connectivity, especially in Default Mode Network and the cerebellar area. In this study, we specifically looked into dFC on a whole brain level, and we focused on critical regions such as DMN and cerebellum. To explore the characteristics of dFC among patients with PTSD, we collected rs-fMRI data from 27 PTSD patients and 30 healthy controls. The study also added a control group of 33 trauma-exposed individuals to further look into trauma impact. Utilizing group spatial independent component analysis (ICA), the dynamic properties on whole brain level were detected with sliding time window approach, and k-means clustering. Two reoccurring FC "States" were identified, with connections being more concentrated on a within-network level in one state and more strongly inter-connected in the other state. Abnormalities in dFC were found within DMN, between DMN and cerebellum, and between DMN and visual network for PTSD patients. The findings were in accordance with the study hypothesis that the dFC alterations might point to deficits in emotional modulation and dysfunctional self-referential thought. Abnormalities in dFC among PTSD patients might also be indicators of PTSD symptoms including depression and anxiety, hypervigilance, impaired cognitive functioning and self-referential information processing.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11682-023-00760-yDOI Listing

Publication Analysis

Top Keywords

ptsd patients
12
functional connectivity
8
post-traumatic stress
8
stress disorder
8
brain level
8
dmn cerebellum
8
abnormalities dfc
8
ptsd
7
dfc
6
altered dynamic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!