Uranium (U) phytotoxicity is an inherently difficult problem in the phytoremediation of U-contaminated environments. Plant chelating and antioxidant systems play an authoritative role in resistance to abiotic stress. To reveal the toxicity of U, the changes of chelating system, osmoregulatory substances and antioxidant systems in Vicia faba roots were studied after short-term (24 h) U exposure. The results indicated that the development of lateral roots and root activity of V. faba were significantly inhibited with U accumulation. Compared with the control, plant chelating systems showed significant positive effects after U exposure (15 - 25 μM). Osmoregulatory substances (proline and soluble protein) increasingly accumulated in roots with increasing U concentration, and O and HO rapidly accumulated after U exposure (15 - 25 μM). Thus, the contents of malondialdehyde (MDA), a marker of lipid peroxidation, were also significantly increased. Antioxidant systems were activated after U exposure but were inhibited at higher U concentrations (15 - 25 μM). In summary, although the chelating, osmotic regulation and antioxidant systems in V. faba were activated after short-term U exposure, the antioxidases (CAT, SOD and POD) were inhibited at higher U concentrations (15 - 25 μM). Therefore, the root cells were severely damaged by peroxidation, which eventually resulted in inhibited activity and arrested root development.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10265-023-01443-xDOI Listing

Publication Analysis

Top Keywords

antioxidant systems
16
vicia faba
8
chelating antioxidant
8
plant chelating
8
osmoregulatory substances
8
exposure 15 - 25 μm
8
inhibited higher
8
higher concentrations
8
concentrations 15 - 25 μm
8
exposure
6

Similar Publications

Development of pH and enzyme dual responsive chitosan/polyaspartic acid nanoparticle-embedded nanofibers for fruit preservation.

Int J Biol Macromol

January 2025

Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China. Electronic address:

This study focuses on the development and application of tea polyphenol-loaded chitosan/polyaspartic acid nanoparticles (TP@CS/PASP-Nps) embedded within polyvinyl alcohol (PVA) nanofibers to extend the shelf life of fruit. The nanofibers were fabricated using electrospinning, which enhanced the stability and uniform dispersion of the nanoparticles. Experimental results demonstrated that the TP@CS/PASP nanoparticles exhibit significant pH and protease-responsive release of TP, with a cumulative release of 56.

View Article and Find Full Text PDF

Aflatoxin B1 impairs the growth and development of chicken PGCs through oxidative stress and mitochondrial dysfunction.

Ecotoxicol Environ Saf

January 2025

Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China. Electronic address:

Aflatoxins harm the reproductive system and gamete development in animals. Primordial germ cells (PGCs) in chickens, as ancestral cells of gametes, are essential for genetic transmission, yet the impact and mechanisms of aflatoxins on them remain elusive. This study systematically investigated the effects of aflatoxin B1 (AFB1) on chicken PGCs and their potential mechanisms using an in vitro culture model.

View Article and Find Full Text PDF

Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing.

Theranostics

January 2025

Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.

Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.

View Article and Find Full Text PDF

Introduction: This study aimed to understand the origin and to explain the maintenance of extended-spectrum β-lactamase (ESBL) isolated from food-producing animals in a third-generation cephalosporin (3GC)-free farm.

Methods: Culture and molecular approaches were used to test molecules other than 3GC such as antibiotics (tetracycline and oxytetracycline), antiparasitics (ivermectin, flumethrin, fenbendazol, and amitraz), heavy metal [arsenic, HNO, aluminum, HNO, cadmium (CdSO), zinc (ZnCl), copper (CuSO), iron (FeCl), and aluminum (AlSO)], and antioxidant (butylated hydroxytoluene) as sources of selective pressure. Whole-genome sequencing using short read (Illumina™) and long read (Nanopore™) technologies was performed on 34 genomes.

View Article and Find Full Text PDF

Antioxidant and immunomodulatory activities of ethanol extracts from L. Skeels and Benth.

Narra J

December 2024

Department of Pharmacology-Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.

and are mostly cultivated in tropical climates for culinary and perfumery purposes, yet their potential medicinal properties remain underreported. The aim of this study was to examine the antioxidant and immunomodulatory activities of ethanol extracts from (EESC) and (EEPC). Reflux extraction was carried out using 96% ethanol on the collected plant specimens to produce EESC and EEPC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!