Wilson assumed that the ventricular gradient (VG) is independent of the ventricular activation order. This paradigm has often been refuted and was never convincingly corroborated. We sought to validate Wilson's concept by intra-individual comparison of the VG of sinus beats and ectopic beats, thus assessing the effects of both altered ventricular conduction (caused by the ectopic focus) and restitution (caused by ectopic prematurity). We studied standard diagnostic ECGs of 118 patients with accidental extrasystoles: normally conducted supraventricular ectopic beats (SN, N = 6) and aberrantly conducted supraventricular ectopic beats (SA, N = 20) or ventricular ectopic beats (V, N = 92). In each patient, we computed the VG vectors of the predominant beat, VGp→, of the ectopic beat, VGe→, and of the VG difference vector, ΔVGep→, and compared their sizes. VGe→ of the SA and V ectopic beats were significantly larger than VGp→ (53.7 ± 25.0 vs. 47.8 ± 24.6 mV∙ms, respectively; < 0.001). ΔVGep→ were three times larger than the difference of VGe→ and VGp→ (19.94 ± 9.76 vs. 5.94 mV∙ms, respectively), demonstrating differences in the VGp→ and VGe→ spatial directions. The amount of ectopic prematurity was not correlated with ΔVGep→, although the larger VG difference vectors were observed for the more premature (<80%) extrasystoles. Electrical restitution properties and electrotonic interactions likely explain our findings. We conclude that the concept of a conduction-independent VG should be tested at equal heart rates and without including premature extrasystoles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964972PMC
http://dx.doi.org/10.3390/jcdd10020089DOI Listing

Publication Analysis

Top Keywords

ectopic beats
24
ectopic
10
intra-individual comparison
8
comparison sinus
8
caused ectopic
8
ectopic prematurity
8
conducted supraventricular
8
supraventricular ectopic
8
larger difference
8
beats
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!