Evidence suggests that β-(2,6)-levan-type fructooligosaccharides (FOSs) possess higher prebiotic potential and selectivity than their β-(2,1)-inulin-type counterparts. The focus of the present work was to develop an enzymatic approach for the synthesis of levan-type FOSs, employing levanases (EC 3.2.1.65), specifically those performing endo-hydrolysis on levans. To identify new levanases, a selection of candidates was obtained via exploration of the levanase family biodiversity through a sequence-driven approach. A collection of 113 candidates was screened according to their specific activities on low- and high-molecular-weight (MW) levan as well as thermal stability. The most active levanases were able to hydrolyze both types of levan with similar efficiency. This ultimately revealed 10 active, highly evolutionary distant and diverse candidate levanases, which demonstrated preferential hydrolysis of levan over inulin. The end-product profile differed significantly depending on levanase with levanbiose, levantriose, and levantetraose being the major FOSs. Among them, the catalytic properties of 5 selected potential new levanases (LEV9 from , LEV36 from , LEV37 from , LEV79 from , LEV91 from ) were characterized, especially in terms of pH and temperature profiles, thermal stability, and kinetic parameters. The identification of these novel levanases is expected to contribute to the production of levan-type FOSs with properties surpassing those of commercial preparations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.2c00728 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!