A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Variability of estimated glomerular filtration rate and 99m Tc-DTPA glomerular filtration rate: implications for a single time-point sampling regime. | LitMetric

Background: This work aimed to determine the implications of the variability in estimated glomerular filtration rate (eGFR) for the prediction of measured GFR (mGFR) for selection of sampling time-point in single-sample 99m Tc-diethylene-triamine-pentaacetate (DTPA) mGFR.

Methods: Patient studies were used to compare eGFR and mGFR ( n  = 282). The eGFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration 2009 equation, from serum creatinine values measured in the laboratory ( n  = 27) or using a point-of-care testing device ( n  = 255). The mGFR was taken as the true value, and the root mean square error (RMS err ) in eGFR was calculated. Receiver operator characteristic curves were generated comparing the sensitivity and specificity of eGFR for the prediction of mGFR within the British Nuclear Medicine Society (BNMS) 2018 guideline ranges.

Results: The overall eGFR RMS err was 19.3 mL/min/1.73 m 2 . Use of eGFR to predict mGFR in the ranges specified in the BNMS 2018 guidelines (25-50; 50-70; 70-100; and >100) achieved the following specificity and sensitivity for each individual range (97%, 71%; 92%, 47%; 81%, 48%; and 74%, 90%). For the middle ranges (50-70 and 70-100) the sensitivity is very low, less than 50%; more studies are classified incorrectly on the basis of eGFR in these ranges than correctly.

Conclusion: This work shows that serum creatinine eGFR is not sufficiently accurate to predict the optimum single-sample time-point for 99m Tc-DTPA mGFR prior to measurement. It is the recommendation of this study that a single sampling time-point should be chosen for studies eGFR > 40 ml/min/1.73 m 2 as opposed to the use of eGFR to determine the sampling time-point.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069751PMC
http://dx.doi.org/10.1097/MNM.0000000000001674DOI Listing

Publication Analysis

Top Keywords

glomerular filtration
12
filtration rate
12
sampling time-point
12
egfr
10
variability estimated
8
estimated glomerular
8
99m tc-dtpa
8
egfr prediction
8
egfr calculated
8
serum creatinine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!