The reprogramming of cell signaling and behavior through the artificial control of cell surface receptor oligomerization shows great promise in biomedical research and cell-based therapy. However, it remains challenging to achieve combinatorial recognition in a complicated environment and logical regulation of receptors for desirable cellular behavior. Herein, we develop a logic-gated DNA nanodevice with responsiveness to multiple environmental inputs for logically controlled assembly of heterogeneous receptors to modulate signaling. The "AND" gate nanodevice uses an i-motif and an ATP-binding aptamer as environmental cue-responsive units, which can successfully implement a logic operation to manipulate receptors on the cell surface. In the presence of both protons and ATP, the DNA nanodevice is activated to selectively assemble MET and CD71, which modulate the HGF/MET signaling, resulting in cytoskeletal reorganization to inhibit cancer cell motility in a tumor-like microenvironment. Our strategy would be highly promising for precision therapeutics, including controlled drug release and cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c04657 | DOI Listing |
Cancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma has a unique tumor microbiome and the systemic depletion of bacteria or fungi using antibiotic/antifungal cocktails leads to a decrease in pancreatic tumor burden in mice. However, functional studies remain rare due to the limited availability of clinically relevant microbiota. Here, we describe in detail the isolation of bacteria and fungi from the small intestine and tumor of pancreatic cancer patients at the Rogel Cancer Center.
View Article and Find Full Text PDFBiomater Sci
December 2024
College of Biology, Hunan University, Changsha, 410082, China.
Tumors pose a serious threat to people's lives and health, and the complex tumor microenvironment is the biggest obstacle to their treatment. In contrast to the basic protein matrices typically employed in 2D or 3D cell culture systems, decellularized extracellular matrix (dECM) can create complex microenvironments. In this study, a combination of physicochemical methods was established to obtain liver decellularized extracellular matrix scaffolds (dLECMs) to provide mechanical support and cell adhesion sites.
View Article and Find Full Text PDFJ Adv Res
October 2024
Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China. Electronic address:
Adv Healthc Mater
November 2024
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal.
Epithelial-to-mesenchymal transition (EMT) is crucial for tumor progression, being linked to alterations in the extracellular matrix (ECM). Understanding the ECM's role in EMT can uncover new therapeutic targets, yet replicating these interactions in vitro remains challenging. It is shown that hybrid hydrogels of alginate (ALG) and cell-derived decellularized ECM (dECM), with independently tunable composition and stiffness, are useful 3D-models to explore the impact of the breast tumor matrix on EMT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!