Over the past decade, researchers have made several efforts to develop gel-based formulations that provide an alternative to traditional hydrogels and emulgel. Due to its excellent antibacterial properties, anise, the main constituent of L., widely used in pharmaceuticals, was selected as the active ingredient in this study. Since many bacteria have developed considerable antibiotic resistance, this research aimed to develop an herbal emulgel for treating skin infections caused by bacteria. Given these obstacles, we developed and evaluated a new, cost-effective topical emulgel solution containing anise essential oil against (). Anise-based emulgels, potential drug delivery platforms, have been evaluated for various parameters, including physical properties, viscosity, pH, rheology, encapsulation efficiency, and in vitro release research. The AEOs emulgel demonstrated remarkable colloidal stability, with a zeta potential of 29 mV, a size of 149.05 nm, and considerable polydispersity. The efficacy of anise-loaded emulgels as antibacterial formulations was evaluated in vitro. was used as a model microbial organism for the antibacterial study. Human keratinocytes (HaCaT) were used to examine the biocompatibility of the emulgel. Molecular docking revealed that the essential oil components of L. possess a high affinity for the bacterial adhesin protein FimH of . These findings indicate that the developed AEOs have the potential to be analyzed using as a model organism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957046 | PMC |
http://dx.doi.org/10.3390/gels9020111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!