Excited states of ortho-nitrobenzaldehyde as a challenging case for single- and multi-reference electronic structure theory.

J Comput Chem

Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.

Published: May 2023

We present a large set of vertical excitation calculations for the ortho-nitrobenzaldehyde (oNBA) molecule, which exhibits a very challenging excited-state electronic structure like other nitroaromatic compounds. The single-reference methods produce mostly consistent results up to about 5.5 eV. By contrast, the CAS second-order perturbation theory (CASPT2) results depend sensitively on the employed parameters. At the CAS self-consistent field level, the energies of the bright states are strongly overestimated while doubly excited states appear too low and mix with these states. This mixing hampers the CASPT2 step, leading to inconsistent results. Only by increasing the number of states in the state-averaging step to about 40-to cover all bright states embedded in the double excitations-and employing extended multistate CASPT2 could CASPT2 results consistent with experiment be obtained. We assign the four bands in the molecule's spectrum: The weakest band at 3.7 eV arises from the states, the second one at 4.4 eV from the ( ) state, the shoulder at 5.2 eV from the ( ) state, and the maximum at 5.7 eV from the ( ) states. We also highlight the importance of modern wave function analysis techniques in elucidating the absorption spectrum of challenging molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.27093DOI Listing

Publication Analysis

Top Keywords

excited states
8
electronic structure
8
bright states
8
states
7
states ortho-nitrobenzaldehyde
4
ortho-nitrobenzaldehyde challenging
4
challenging case
4
case single-
4
single- multi-reference
4
multi-reference electronic
4

Similar Publications

Deep Equilibrium Unfolding Learning for Noise Estimation and Removal in Optical Molecular Imaging.

Comput Med Imaging Graph

January 2025

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China. Electronic address:

In clinical optical molecular imaging, the need for real-time high frame rates and low excitation doses to ensure patient safety inherently increases susceptibility to detection noise. Faced with the challenge of image degradation caused by severe noise, image denoising is essential for mitigating the trade-off between acquisition cost and image quality. However, prevailing deep learning methods exhibit uncontrollable and suboptimal performance with limited interpretability, primarily due to neglecting underlying physical model and frequency information.

View Article and Find Full Text PDF

We have successfully prepared a significant number of nanowires from non-toxic silicon sources. Compared to the SiO silicon source used in most other articles, our preparation method is much safer. It provides a simple and harmless new preparation method for the preparation of silicon nanowires.

View Article and Find Full Text PDF

We present the synthesis, structural analysis, and remarkable reactivity of the first carbon nanohoop that fully incorporates ferrocene in the macrocyclic backbone. The high strain imposed on the ferrocene by the curved nanohoop structure enables unprecedented photochemical reactivity of this otherwise photochemically inert metallocene complex. Visible light activation triggers a ring-opening of the nanohoop structure, fully dissociating the Fe-cyclopentadienyl bonds in the presence of 1,10-phenanthroline.

View Article and Find Full Text PDF

Acridine/Lewis Acid Complexes as Powerful Photocatalysts: A Combined Experimental and Mechanistic Study.

ACS Catal

October 2024

Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.

A class of generated Lewis acid (LA) activated acridine complexes is reported, which act as potent photochemical catalysts for the oxidation of a variety of protected secondary amines. Acridine/LA complexes exhibit tunable excited state reduction potentials ranging from +2.07 to 2.

View Article and Find Full Text PDF

In this study, we investigate how modulating organic spacers in perovskites influences their X-ray detection performance and reveal the mechanism of low-dose detection with high sensitivity using femtosecond-transient absorption spectroscopy (fs-TAS). Particularly, we employ N,N,N',N'-tetramethyl-1,4-phenylenediammonium (TMPDA) and N,N-dimethylphenylene-p-diammonium (DPDA) as organic spacers to synthesize 2D perovskite single crystals (SCs). We find that DPDA-based SCs exhibit reduced interplanar spacing between inorganic layers, leading to increased lattice packing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!