Robust and antibacterial dental resins are essential for repairing the shape and function of the teeth. However, an ingenious way to achieve a synergistic enhancement of these two properties is still lacking. In this work, guided by molecular dynamics (MD) calculations, a boron nitride nanosheet (BNN)/titanium dioxide (TiO) nanocomposite system was synthesized and used to modify the dental flow resin to enhance its mechanical and antimicrobial properties. The mechanical and antimicrobial enhancement mechanisms were further explored. The modified resin demonstrated outstanding performance improvement with 88.23%, 58.47%, 82.01%, and 55.06% improvement in compressive strength (CS), microhardness (MH), flexural strength (FS), and elastic modulus (EM), respectively. Moreover, the modified resin could effectively inhibit the growth of () regardless of aging in water and the inhibition rates were more than 90%. In conclusion, the modified resin is expected to be an ideal restorative material for clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2bm01848a | DOI Listing |
J Prosthet Dent
January 2025
Associate Professor, Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Switzerland; and Adjunct Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, OH.
Statement Of Problem: Acrylic denture base resins are subject to colonization by oral and nonoral bacteria, contributing to the onset of denture stomatitis. However, how the addition of antimicrobial substances affects the mechanical and optical properties of additively manufactured denture base resin remains unclear.
Purpose: The purpose of this in vitro study was to investigate the surface roughness, color stainability, and flexural strength of antimicrobial-modified, additively manufactured polymethyl methacrylate (PMMA) denture base resin in tooth and gingiva colors.
Int J Clin Pediatr Dent
November 2024
Department of Pediatric and Preventive Dentistry, Shree Guru Gobind Singh Tricentenary Dental College, Hospital and Research Institute, Gurugram, Haryana, India.
Aim: The present case-control study was planned to assess the comparative efficacy of resin-modified calcium silicate, resin-modified glass ionomer, and Dycal as pulp capping agents in indirect pulp therapy for deeply carious young permanent molars.
Materials And Methods: Thirty deeply carious young posterior teeth were treated by indirect pulp therapy. During the treatment, the cavity floor was lined with TheraCal or resin-modified glass ionomer cement (RMGIC) in the study group and with Dycal (control group) followed by GC IX and composite restoration.
Macromol Rapid Commun
January 2025
Department of Advanced Materials Engineering, Chung-Ang University, Anseong, 17546, Republic of Korea.
Transport equipment manufacturers in the automotive and aerospace industries are focused on developing materials that enhance fuel efficiency and reduce carbon dioxide emissions. A significant approach is employing lightweight materials like aluminum, magnesium, and polymer-based composites. Polyamide-based composites, particularly nylon 66, as viable alternatives due to their excellent rigidity, chemical resistance, and thermal stability are investigated to address the limitations of traditional thermosetting resins, which are difficult to recycle and have lengthy molding processes that hinder mass production.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Indian Institute of Technology Guwahati, Assam 781039, India.
The oscillatory Belousov-Zhabotinsky (BZ) reaction is often used for the study of rotating spiral waves that are responsible for life-threatening cardiac arrhythmia. In this work, we explore the influence of a concentration gradient on the dynamics of spiral waves in the BZ-reaction system. Using ion-exchange resin beads, we introduce a gradient of hydrogen ions in a thin layer of BZ gel hosting a spiral wave.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Periodontics Dentistry and Community Dentistry, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia.
(1) Background: Alkasite is a novel restorative material that has attracted interest in recent years because of its distinctive characteristics, including its high translucency and excellent biocompatibility. It is comparable to glass ionomer cement (GIC) and resin-modified glass ionomer cement (RMGIC) due to its fluoride-release ability and usage in esthetically concerned areas. This study aimed to assess the shear bond strength (SBS) of Alkasite restorative material in comparison with GIC and RMGIC (2) Methods: The study sample included 120 extracted sound primary molars and was randomly split into three groups, including group 1: RMGIC; group 2: Alkasite; and group 3: GIC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!