Cyclic di-adenosine monophosphate (c-di-AMP) is a bacterial second messenger that can be recognized by infected host cells and activate the immunoinflammatory response. The purpose of this study is to demonstrate the effect of c-di-AMP on the differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying mechanisms. In the present study, we find that the gingival crevicular fluid (GCF) of patients with chronic periodontitis has a higher expression level of c-di-AMP than that of healthy people. , c-di-AMP influences the differentiation of hPDLSCs by upregulating Toll-like receptors (TLRs); specifically, it inhibits osteogenic differentiation by activating NF-κB and ERK/MAPK and promotes adipogenic differentiation through the NF-κB and p38/MAPK signaling pathways. Inhibitors of TLRs or activated pathways reduce the changes induced by c-di-AMP. Our results establish the potential correlation among bacterial c-di-AMP, periodontal tissue homeostasis and chronic periodontitis pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160224 | PMC |
http://dx.doi.org/10.3724/abbs.2023018 | DOI Listing |
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Microbiology and Pathogenic Biology, Air Force Military Medical University, Xi'an 710032, China. *Corresponding authors, E-mail:
Objective The prevalence of drug-resistant Mycobacterium tuberculosis (Mtb) strains is exacerbating the global burden of tuberculosis (TB), highlighting the urgent need for new treatment strategies for TB. Methods The recombinant adenovirus vaccine expressing cyclic di-adenosine monophosphate (c-di-AMP) phosphodiesterase B (CnpB) (rAd-CnpB), was administered to normal mice via mucosal immunization, either alone or in combination with drug therapy, to treat Mtb respiratory infections in mice.Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of antibodies in serum and bronchoalveolar lavage fluid (BALF).
View Article and Find Full Text PDFJ Oral Microbiol
December 2024
Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland.
Background: Bacterial cyclic dinucleotides (CDNs), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) upregulate interferon signaling proteins of human gingival fibroblasts (HGFs). However, the simultaneous effect of bacterial CDNs and lipopolysaccharides (LPS) on the HGF proteome is unknown.
Aim: The aim was to apply an unbiased proteomics approach to evaluate how simultaneous exposure to CDNs and (Pg) LPS affect the global proteome of HGFs.
Adv Healthc Mater
December 2024
Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080, USA.
A first-in-class vaccine adjuvant delivery system, Mn-ZIF, is developed by incorporating manganese (Mn) into the zinc-containing zeolitic-imidazolate framework-8 (ZIF-8). The mixed metal approach, which allowed for tunable Mn doping, is made possible by including a mild reducing agent in the reaction mixture. This approach allows up to 50% Mn, with the remaining 50% Zn within the ZIF.
View Article and Find Full Text PDFbioRxiv
August 2024
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
(), an extracellular spirochetal pathogen, elicits a type-I interferon (IFN-I) response that contributes to the pathology of Lyme disease, including the development and severity of Lyme arthritis. However, the specific Pathogen-Associated Molecular Patterns (PAMPs) of responsible for triggering the IFN-I response are not well understood. Previous studies have identified an unknown, nuclease-resistant component in culture supernatants that significantly stimulates the IFN-I response, but its identity remains unknown.
View Article and Find Full Text PDFmBio
August 2024
Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
Cyclic purine nucleotides are important signal transduction molecules across all domains of life. 3',5'-cyclic di-adenosine monophosphate (c-di-AMP) has roles in both prokaryotes and eukaryotes, while the signals that adjust intracellular c-di-AMP and the molecular machinery enabling a network-wide homeostatic response remain largely unknown. Here, we present evidence for an acetyl phosphate (AcP)-governed network responsible for c-di-AMP homeostasis through two distinct substrates, the diadenylate cyclase NA ntegrity canning protein (DisA) and its newly identified transcriptional repressor, DasR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!