Globisporangium sylvaticum (syn. Pythium sylvaticum), is an oomycete that causes root rot and damping off of field crops, ornamentals, and vegetables. Several species in Pythiaceae are associated with black root rot of strawberry [(Fragaria × ananassa) Duchesne] (Millner 2006). Mature, stunted 'Chandler' strawberry plants, with reduced shoot vigor and black necrotic roots, were collected from Rhea County (June 2018) and Cumberland County, TN (May 2019). Aboveground symptoms occurred in low incidence (<5% of plants) in the fields. Plant roots were rinsed with tap water, cut into 1 to 3 cm pieces, and surface-disinfested (70% ethanol, 1 min) followed by a sterile water rinse. Root segments were crushed, placed on 20% V8 juice agar, and incubated in the dark at 21°C for 3 days. White fluffy mycelia grew from a majority of roots and coenocytic hyphae with globose hyphal swellings, delimited from hyphae by septa, were observed with microscopy. Hyphae were initially branched, curled, hyaline, and aseptate; however, septations were observed in older cultures. Globose structures (terminal and intercalary) were identified as sporangia [11 to 32 (avg. 22.1) µm diameter] when zoospores were observed (Parikh et al. 2022). Oospores [9 to 21 (avg. 16) μm diameter] were globose, smooth, aplerotic, and thick-walled. Oogonia, with or without one or more inflated antheridia, were observed when isolates were paired in culture, characteristics consistent with descriptions of Campbell and Hendrix (1967), Pratt and Green (1971), van der Plaats-Niterink (1981), and Uzuhashi et al. (2010). Genomic DNA was extracted (Extract-N-Amp™; Sigma-Aldrich, MO) for PCR amplification of internal transcribed spacer (ITS) regions of rDNA with primers ITS1/ITS4 (White et al. 1990); ITS and large subunit rRNA regions with primers UN-up18S42/UN-lo28S22 (Robideau et al. 2011); and cytochrome c oxidase subunit I (COI) mitochondrial DNA with primers OomCoxI-Levup/OomCoxI-Levlo (Robideau et al. 2011). Primers ITS1/ITS4 were used to amplify isolate TN (GenBank Accession MW386310, which had 100% homology with reference isolate MK326528). Primers UN-up18S42/UN-lo28S22 amplified isolates SAP18 and OO1 (Accessions MZ881935 and MZ881936, which had 99.8% homology with HQ665236), and COI primers amplified isolate SAP18 (Accession OK020192, which had 100% homology with GU071816 and KT692835). To satisfy Koch's postulates, inoculum of G. sylvaticum grown on autoclaved wheat seeds was added (5% w/v) to planting mix (1 peat:1 sand, v/v). Young, rooted strawberry plants were planted in 1.2-L pots with infested (n = 6) and control (no pathogen, n = 6) mixes, which was saturated with deionized water. Pots were covered with clear plastic for 48 h to maintain high humidity. Plants were grown in a greenhouse (24°C avg.) for 8 weeks. The disease assay was repeated. All plants in infested mix died, with black, necrotic roots. Plants in the control mix were healthy and well-established. The pathogen was reisolated from roots of all inoculated plants and confirmed to be G. sylvaticum based on morphology and molecular analyses. Root disease of strawberry caused by G. sylvaticum has been reported in the USA (Campbell and Hendrix 1967; Nemec and Sanders 1970; Pratt and Green 1971). This is the first report of G. sylvaticum causing root rot of strawberry in Tennessee. With the loss of methyl bromide, sustainable disease control strategies are needed to provide effective management options for strawberry black root rot.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-01-23-0007-PDNDOI Listing

Publication Analysis

Top Keywords

root rot
12
black root
8
globisporangium sylvaticum
8
report strawberry
4
strawberry black
4
rot caused
4
caused globisporangium
4
sylvaticum tennessee
4
tennessee usa
4
usa globisporangium
4

Similar Publications

Aggressiveness and phylogenetic relationship of associated with crown and root rot in pyrethrum plants.

Plant Dis

January 2025

The University of Melbourne, Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, Parkville, Victoria, Australia;

In Australia, pyrethrum (Tanacetum cinerariifolium) cultivation provides a significant portion of the global supply of natural insecticidal pyrethrins. However, crown and root rots, along with stunted plant growth and plant loss during winter, are significant issues affecting certain sites. Several isolates of the Fusarium oxysporum species complex (FOSC) have been identified as causal agents of crown and root rot in pyrethrum, highlighting these as key pathogens contributing to this decline.

View Article and Find Full Text PDF

While recycling irrigation water can reduce water use constraints and costs in nurseries, adoption is hindered by the associated risk of recirculating and spreading waterborne pathogens. To enable regional water re-use, this study assessed oomycete re-circulation risks and recycled water treatment efficacy at organismal and community scales. In culture-based analysis of recycled pond water at two Mid-Atlantic nurseries across three years, diverse oomycetes (12+ species) were detected using culture-based analysis, with Phytopythium helicoides as the dominant species; MiSeq analysis detected eight of these species, plus 24 additional taxa.

View Article and Find Full Text PDF

The polysaccharide chitosan possesses broad-spectrum antimicrobial properties and has proven effective in controlling various postharvest diseases in fruits. Nevertheless, the fundamental mechanisms underlying its action remain unclear. In this study, the antifungal effects of chitosan with different molecular weights against Fusarium avenaceum, a pathogen causing root rot in Angelica sinensis, were evaluated.

View Article and Find Full Text PDF

Antioomycete Nanoformulation for Biocontrol of English Walnut Crown and Root Rot Caused by .

Plants (Basel)

January 2025

Laboratorio de Fitopatología, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota 2260000, Chile.

In Chile and worldwide, walnut () production faces significant losses due to crown and root rot caused by the phytopathogen . Currently, control methods have proven insufficient or unfavorable for the environment, increasing the need for sustainable alternatives. This research evaluates nanoemulsions based on extracts of medicinal plants endemic to Chile to control in walnut crops.

View Article and Find Full Text PDF

Investigation and Identification of Fungal Diseases of in China.

Biology (Basel)

January 2025

School of Life and Health Science College, Kaili University, Kaili 556011, China.

The industry plays an important role in the economic development of Yuanjiang county of Yuxi city in Yunnan province, China. In order to reduce the harm of diseases and ensure the quality of products, the occurrence of was investigated. The pathogenic fungi of wild and cultivated species of were isolated by a tissue separation method, and DNA sequencing was carried out by using the sequence analysis of the ribosomal rDNA-ITS region, and the pathogenic fungi were classified and identified by finally combining morphological observations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!