AI Article Synopsis

  • Karst caves have unique environments with constant temperature, high humidity, and low nutrient levels, making them important for studying microbial diversity and biogeochemical processes.
  • The research focused on the microbial communities in Leșu Cave, utilizing techniques like 16S rRNA gene sequencing and physiological profiling to assess microbial diversity and their preferences for organic substrates.
  • Results showed that while there was overall similarity in bacterial phyla, specific sites within the cave exhibited unique bacterial communities based on environmental conditions, with nutrient sources influencing their distribution patterns.

Article Abstract

Introduction: Karst caves are characterized by relatively constant temperature, lack of light, high humidity, and low nutrients availability. The diversity and functionality of the microorganisms dwelling in caves micro-habitats are yet underexplored. Therefore, in-depth investigations of these ecosystems aid in enlarging our understanding of the microbial interactions and microbially driven biogeochemical cycles. Here, we aimed at evaluating the diversity, abundance, distribution, and organic substrate preferences of microbial communities from Peștera cu Apă din Valea Leșului (Leșu Cave) located in the Apuseni Mountains (North-Western Romania).

Materials And Methods: To achieve this goal, we employed 16S rRNA gene amplicon sequencing and community-level physiological profiling (CLPP) paralleled by the assessment of environmental parameters of cave sediments and water.

Results And Discussion: (synonym ) was the most prevalent phylum detected across all samples whereas the abundance detected at order level varied among sites and between water and sediment samples. Despite the general similarity at the phylum-level in Leșu Cave across the sampled area, the results obtained in this study suggest that specific sites drive bacterial community at the order-level, perhaps sustaining the enrichment of unique bacterial populations due to microenvironmental conditions. For most of the dominant orders the distribution pattern showed a positive correlation with C-sources such as putrescine, γ-amino butyric acid, and D-malic acid, while particular cases were positively correlated with polymers (Tween 40, Tween 80 and α-cyclodextrin), carbohydrates (α-D-lactose, i-erythritol, D-mannitol) and most of the carboxylic and ketonic acids. Physicochemical analysis reveals that sediments are geochemically distinct, with increased concentration of Ca, Fe, Al, Mg, Na and K, whereas water showed low nitrate concentration. Our PCA indicated the clustering of different dominant orders with Mg, As, P, Fe, and Cr. This information serves as a starting point for further studies in elucidating the links between the taxonomic and functional diversity of subterranean microbial communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941645PMC
http://dx.doi.org/10.3389/fmicb.2023.962452DOI Listing

Publication Analysis

Top Keywords

microbial communities
12
distribution organic
8
preferences microbial
8
leșu cave
8
dominant orders
8
diversity
4
diversity distribution
4
organic substrates
4
substrates preferences
4
microbial
4

Similar Publications

Rare constituents of the nasal microbiome contribute to the acute exacerbation of chronic rhinosinusitis.

Inflamm Res

January 2025

Department of Otolaryngology, Peking University Third Hospital, Haidian District, No. 49 Huayuan North Road, Beijing, 100191, People's Republic of China.

Background: Dysbiosis of the nasal microbiome is considered to be related to the acute exacerbation of chronic rhinosinusitis (AECRS). The microbiota in the nasal cavity of AECRS patients and its association with disease severity has rarely been studied. This study aimed to characterize nasal dysbiosis in a prospective cohort of patients with AECRS.

View Article and Find Full Text PDF

Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.

View Article and Find Full Text PDF

The HoloFood project used a hologenomic approach to understand the impact of host-microbiota interactions on salmon and chicken production by analysing multiomic data, phenotypic characteristics, and associated metadata in response to novel feeds. The project's raw data, derived analyses, and metadata are deposited in public, open archives (BioSamples, European Nucleotide Archive, MetaboLights, and MGnify), so making use of these diverse data types may require access to multiple resources. This is especially complex where analysis pipelines produce derived outputs such as functional profiles or genome catalogues.

View Article and Find Full Text PDF

Attraction of Bactrocera cucurbitae (Coquillett) to selected gut microbiota supernatants: implications for pest control.

Pest Manag Sci

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

Background: Bactrocera cucurbitae (Coquillett) is a distructive quarantine insect pest that causes significant economic losses on cucurbit crops. To explore a green control approach, we investigated the behavioral responses of B. cucurbitae larvae and adults to bacterial suspensions, sediments, and supernatants derived from eight gut microbial strains across four distinct genera.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!