Microglia are key mediators of inflammatory responses within the brain, as they regulate pro-inflammatory responses while also limiting neuroinflammation via reparative phagocytosis. Thus, identifying genes that modulate microglial function may reveal novel therapeutic interventions for promoting better outcomes in diseases featuring extensive inflammation, such as stroke. To facilitate identification of potential mediators of inflammation, we performed single-cell RNA sequencing of aged mouse brains following stroke and found that was significantly up-regulated, particularly in microglia. The increased expression was further validated in microglial culture, stroke models with microglial depletion, and human autopsy samples. Ifi27l2a is known to be induced by interferons for viral host defense, however the role of Ifi27l2a in neurodegeneration is unknown. studies in cultured microglia demonstrated that Ifi27l2a overexpression causes neuroinflammation via reactive oxygen species. Interestingly, hemizygous deletion of Ifi27l2a significantly reduced gliosis in the thalamus following stroke, while also reducing neuroinflammation, indicating Ifi27l2a gene dosage is a critical mediator of neuroinflammation in ischemic stroke. Collectively, this study demonstrates that a novel gene, Ifi27l2a, regulates microglial function and neuroinflammation in the aged brain and following stroke. These findings suggest that Ifi27l2a may be a novel target for conferring cerebral protection post-stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949241 | PMC |
http://dx.doi.org/10.21203/rs.3.rs-2557290/v1 | DOI Listing |
Life (Basel)
September 2023
School of Sport Medicine and Health, Chengdu Sport University, Chengdu 610041, China.
Purpose: Physical exercise mitigates the effects of aging and cognitive decline. However, the precise neurobiological mechanisms underlying this phenomenon remain unclear. The primary aim of this study was to investigate the protective effect of exercise on age-related memory deficits in the prefrontal cortex (PFC) and hippocampus using bioinformatic analysis and biochemical verification.
View Article and Find Full Text PDFMicroglia are key mediators of inflammatory responses within the brain, as they regulate pro-inflammatory responses while also limiting neuroinflammation via reparative phagocytosis. Thus, identifying genes that modulate microglial function may reveal novel therapeutic interventions for promoting better outcomes in diseases featuring extensive inflammation, such as stroke. To facilitate identification of potential mediators of inflammation, we performed single-cell RNA sequencing of aged mouse brains following stroke and found that was significantly up-regulated, particularly in microglia.
View Article and Find Full Text PDFBlood
August 2017
Department of Pharmacology and.
Myelofibrosis (MF) is a devastating blood disorder. The mutation has been detected in ∼50% cases of MF. Elevated expression of high-mobility group AT hook 2 (HMGA2) has also been frequently observed in patients with MF.
View Article and Find Full Text PDFPLoS One
August 2017
Microbiology and Infectious Diseases, School of Medicine, Flinders University, Adelaide, South Australia, Australia.
We have previously reported that the absence of sphingosine kinase 1 (SK1) affects both dengue virus (DENV) infection and innate immune responses in vitro. Here we aimed to define SK1-dependancy of DENV-induced disease and the associated innate responses in vivo. The lack of a reliable mouse model with a fully competent interferon response for DENV infection is a challenge, and here we use an experimental model of DENV infection in the brain of immunocompetent mice.
View Article and Find Full Text PDFBlood
June 2016
Department of Pharmacology and.
An activating JAK2V617F mutation has been found in ∼50% patients with myelofibrosis (MF). Inactivating mutations in histone methyltransferase enhancer of zeste homolog 2 (EZH2) also have been observed in patients with MF. Interestingly, inactivating EZH2 mutations are often associated with JAK2V617F mutation in MF, although their contributions in the pathogenesis of MF remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!