AI Article Synopsis

  • Small cell lung cancer (SCLC) is a highly aggressive cancer with few treatment options, where tumor cell plasticity and immune evasion complicate therapies.
  • The study highlights CRACD, a protein often inactive in SCLC, as a key regulator that influences tumor cell behavior, with its loss leading to enhanced neuroendocrine plasticity and reduced immune response.
  • Targeting EZH2, a protein involved in gene regulation, presents a potential treatment strategy by restoring MHC-I expression, which can improve immune surveillance in CRACD-negative SCLC patients.

Article Abstract

Small cell lung cancer (SCLC) is aggressive with limited therapeutic options. Despite recent advances in targeted therapies and immunotherapies, therapy resistance is a recurring issue, which might be partly due to tumor cell plasticity, a change in cell fate. Nonetheless, the mechanisms underlying tumor cell plasticity and immune evasion in SCLC remain elusive. CRACD, a capping protein inhibitor that promotes actin polymerization, is frequently inactivated in SCLC. knockout (KO) transforms preneoplastic cells into SCLC tumor-like cells and promotes in vivo SCLC development driven by , , and triple KO. KO induces neuroendocrine (NE) plasticity and increases tumor cell heterogeneity of SCLC tumor cells via dysregulated NOTCH1 signaling by actin cytoskeleton disruption. CRACD depletion also reduces nuclear actin and induces EZH2-mediated H3K27 methylation. This nuclear event suppresses the MHC-I genes and thereby depletes intratumoral CD8 T cells for accelerated SCLC tumorigenesis. Pharmacological blockade of EZH2 inhibits CRACD-negative SCLC tumorigenesis by restoring MHC-I expression and immune surveillance. Unsupervised single-cell transcriptomics identifies SCLC patient tumors with concomitant inactivation of CRACD and downregulated MHC-I pathway. This study defines CRACD, an actin regulator, as a tumor suppressor that limits cell plasticity and immune evasion and proposes EZH2 blockade as a viable therapeutic option for CRACD-negative SCLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949038PMC
http://dx.doi.org/10.1101/2023.02.15.528365DOI Listing

Publication Analysis

Top Keywords

plasticity immune
12
immune evasion
12
tumor cell
12
cell plasticity
12
sclc
10
induces neuroendocrine
8
neuroendocrine plasticity
8
small cell
8
cell lung
8
lung cancer
8

Similar Publications

Injectable Polyhydroxyalkanoate-Nano-Clay Microcarriers Loaded with r-BMSCs Enhance the Repair of Cranial Defects in Rats.

Int J Nanomedicine

December 2024

Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.

Purpose: Successful regeneration of cranial defects necessitates the use of porous bone fillers to facilitate cell proliferation and nutrient diffusion. Open porous microspheres, characterized by their high specific surface area and osteo-inductive properties, offer an optimal microenvironment for cell ingrowth and efficient ossification, potentially accelerating bone regeneration.

Materials And Methods: An in vitro investigation was conducted to assess the physicochemical properties, porosity, and biocompatibility of PHA-nano-clay open porous microspheres.

View Article and Find Full Text PDF

White blood cell (WBC) subtypes reflect immune and inflammatory conditions in patients. This study aimed to examine the association between the ratio of platelets to WBC subtypes and mortality outcomes in patients with moderate-to-severe traumatic brain injury (TBI). The Trauma Registry System of the hospital was retrospectively reviewed to gather medical records of 2397 adult patients who were hospitalized from 2009 to 2020 and had moderate-to-severe TBI with a head abbreviated injury scale (AIS) score of 3 or higher.

View Article and Find Full Text PDF

Background: Cutaneous melanoma is one of the most invasive and lethal skin malignant tumors. Compared to primary melanoma, metastatic melanoma (MM) presents poorer treatment outcomes and a higher mortality rate. The tumor microenvironment (TME) plays a critical role in MM progression and immunotherapy resistance.

View Article and Find Full Text PDF

Ecotoxicity of Biodegradable Microplastics and Bio-based Microplastics: A Review of in vitro and in vivo Studies.

Environ Manage

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.

As biodegradable and bio-based plastics increasingly replace conventional plastics, the need for a comprehensive understanding of their ecotoxicity becomes more pressing. This review systematically presents the ecotoxicity of the microplastics (MPs) from different biodegradable plastics and bioplastics on various animals and plants. High doses of polylactic acid (PLA) MPs (10%) have been found to reduce plant nitrogen content and biomass, and affect the accumulation of heavy metals in plants.

View Article and Find Full Text PDF

Prostate Luminal Cell Plasticity and Cancer.

Cancer Lett

December 2024

Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA; The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA. Electronic address:

Cellular plasticity in prostate cancer promotes treatment resistance. Several independent studies have used mouse models, single-cell RNA sequencing, and genetic lineage tracing approaches to characterize cellular differentiation and plasticity during prostate organogenesis, homeostasis and androgen-mediated tissue regeneration. We review these findings and recent work using immune-competent genetically-engineered mouse models to characterize cellular plasticity and clonal dynamic changes during prostate cancer progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!