Background: Many computational methods have been developed to detect non-reference transposable element (TE) insertions using short-read whole genome sequencing data. The diversity and complexity of such methods often present challenges to new users seeking to reproducibly install, execute, or evaluate multiple TE insertion detectors.

Results: We previously developed the McClintock meta-pipeline to facilitate the installation, execution, and evaluation of six first-generation short-read TE detectors. Here, we report a completely re-implemented version of McClintock written in Python using Snakemake and Conda that improves its installation, error handling, speed, stability, and extensibility. McClintock 2 now includes 12 short-read TE detectors, auxiliary pre-processing and analysis modules, interactive HTML reports, and a simulation framework to reproducibly evaluate the accuracy of component TE detectors. When applied to the model microbial eukaryote Saccharomyces cerevisiae, we find substantial variation in the ability of McClintock 2 components to identify the precise locations of non-reference TE insertions, with RelocaTE2 showing the highest recall and precision in simulated data. We find that RelocaTE2, TEMP, TEMP2 and TEBreak provide a consistent and biologically meaningful view of non-reference TE insertions in a species-wide panel of ∼1000 yeast genomes, as evaluated by coverage-based abundance estimates and expected patterns of tRNA promoter targeting. Finally, we show that best-in-class predictors for yeast have sufficient resolution to reveal a dyad pattern of integration in nucleosome-bound regions upstream of yeast tRNA genes for Ty1, Ty2, and Ty4, allowing us to extend knowledge about fine-scale target preferences first revealed experimentally for Ty1 to natural insertions and related copia-superfamily retrotransposons in yeast.

Conclusion: McClintock (https://github.com/bergmanlab/mcclintock/) provides a user-friendly pipeline for the identification of TEs in short-read WGS data using multiple TE detectors, which should benefit researchers studying TE insertion variation in a wide range of different organisms. Application of the improved McClintock system to simulated and empirical yeast genome data reveals best-in-class methods and novel biological insights for one of the most widely-studied model eukaryotes and provides a paradigm for evaluating and selecting non-reference TE detectors for other species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948991PMC
http://dx.doi.org/10.1101/2023.02.13.528343DOI Listing

Publication Analysis

Top Keywords

transposable element
8
short-read detectors
8
non-reference insertions
8
mcclintock
7
detectors
6
yeast
5
reproducible evaluation
4
evaluation transposable
4
element detectors
4
detectors mcclintock
4

Similar Publications

Background/aim: Lung cancer, a predominant contributor to cancer mortality, is characterized by diverse etiological factors, including tobacco smoking and genetic susceptibilities. Despite advancements, particularly in nonsmall-cell lung cancer (NSCLC), therapeutic options for lung squamous cell carcinoma (LUSC) are limited. Transposable elements (TEs) and their regulatory proteins, such as tigger transposable element derived (TIGD) family proteins, have been implicated in cancer development.

View Article and Find Full Text PDF

DNA methylation is an essential epigenetic mechanism for regulation of gene expression, through which many physiological (X-chromosome inactivation, genetic imprinting, chromatin structure and miRNA regulation, genome defense, silencing of transposable elements) and pathological processes (cancer and repetitive sequences-associated diseases) are regulated. Nanopore sequencing has emerged as a novel technique that can analyze long strands of DNA (long-read sequencing) without chemically treating the DNA. Interestingly, nanopore sequencing can also extract epigenetic status of the nucleotides (including both 5-Methylcytosine and 5-hydroxyMethylcytosine), and a large variety of bioinformatic tools have been developed for improving its detection properties.

View Article and Find Full Text PDF

Characterization and comparative analysis of antimicrobial resistance in from hospital and municipal wastewater treatment plants.

J Water Health

December 2024

Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India; Center for Antimicrobial Resistance and Education (CARE), Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India E-mail:

The spread of antimicrobial resistance (AMR) poses global health threats, with wastewater treatment plants (WWTPs) as hotspots for its development. Horizontal gene transfer facilitates acquisition of resistance genes, particularly through integrons in . Our study investigates isolates from hospital and municipal WWTPs, focusing on integrons, their temporal correlation and phenotypic and molecular characterization of AMR.

View Article and Find Full Text PDF

Cytidine analogs in plant epigenetic research and beyond.

J Exp Bot

December 2024

Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Acad Sci, Šlechtitelů 31, Olomouc 77900, Czech Republic.

Cytosine (DNA) methylation plays important roles in silencing transposable elements, plant development, genomic imprinting, stress responses, and maintenance of genome stability. To better understand the functions of this epigenetic modification, several tools have been developed to manipulate DNA methylation levels. These include mutants of DNA methylation writers and readers, targeted manipulation of locus-specific methylation, and the use of chemical inhibitors.

View Article and Find Full Text PDF

The beta-rhizobial strain Paraburkholderia phymatum STM815 is noteworthy for its wide host range in nodulating legumes, primarily mimosoids (over 50 different species) but also some papilionoids. It cannot, however, nodulate soybean (Glycine max [L.] Merr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!