The ubiquity, importance, and sophistication of foraging behavior makes it an ideal platform for studying naturalistic decision making in animals. We developed a spatial patch-foraging task for rats, in which subjects chose how long to remain in one foraging patch as the rate of food earnings steadily decreased. The cost of seeking out a new location was varied across sessions. The behavioral task was designed to mimic the structure of natural foraging problems, where distinct spatial locations are associated with different reward statistics, and decisions require navigation and movement through space. Male and female Long-Evans rats generally followed the predictions of theoretical models of foraging, albeit with a consistent tendency to persist with patches for too long compared to behavioral strategies that maximize food intake rate. The tendency to choose overly-long patch residence times was stronger in male rats. We also observed sex differences in locomotion as rats performed the task, but these differences in movement only partially accounted for the differences in patch residence durations observed between male and female rats. Together, these results suggest a nuanced relationship between movement, sex, and foraging decisions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949151 | PMC |
http://dx.doi.org/10.1101/2023.02.19.529135 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!