Background: Fungi use the accessory segments of their pan-genomes to adapt to their environments. While gene presence-absence variation (PAV) contributes to shaping these accessory gene reservoirs, whether these events happen in specific genomic contexts remains unclear. Additionally, since pan-genome studies often group together all members of the same species, it is uncertain whether genomic or epigenomic features shaping pan-genome evolution are consistent across populations within the same species. Fungal plant pathogens are useful models for answering these questions because members of the same species often infect distinct hosts, and they frequently rely on gene PAV to adapt to these hosts.

Results: We analyzed gene PAV in the rice and wheat blast fungus, , and found that PAV of disease-causing effectors, antibiotic production, and non-self-recognition genes may drive the adaptation of the fungus to its environment. We then analyzed genomic and epigenomic features and data from available datasets for patterns that might help explain these PAV events. We observed that proximity to transposable elements (TEs), gene GC content, gene length, expression level in the host, and histone H3K27me3 marks were different between PAV genes and conserved genes, among other features. We used these features to construct a random forest classifier that was able to predict whether a gene is likely to experience PAV with high precision (86.06%) and recall (92.88%) in rice-infecting . Finally, we found that PAV in wheat- and rice-infecting pathotypes of differed in their number and their genomic context.

Conclusions: Our results suggest that genomic and epigenomic features of gene PAV can be used to better understand and even predict fungal pan-genome evolution. We also show that substantial intra-species variation can exist in these features.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9949116PMC
http://dx.doi.org/10.1101/2023.02.17.529015DOI Listing

Publication Analysis

Top Keywords

genomic epigenomic
12
epigenomic features
12
gene pav
12
gene
9
pav
9
genomic contexts
8
predict gene
8
gene presence-absence
8
presence-absence variation
8
fungal plant
8

Similar Publications

Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm.

View Article and Find Full Text PDF

Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome.

View Article and Find Full Text PDF

DNA methylation (DNAm) is a key epigenetic mark that shows profound alterations in cancer. Read-level methylomes enable more in-depth analyses, due to their broad genomic coverage and preservation of rare cell-type signals, compared to summarized data such as 450K/EPIC microarrays. Here, we propose MethylBERT, a Transformer-based model for read-level methylation pattern classification.

View Article and Find Full Text PDF

Recent progress in CRISPR/Cas9 system for eye disorders.

Prog Mol Biol Transl Sci

January 2025

Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea. Electronic address:

Ocular disorders encompass a broad spectrum of phenotypic and clinical symptoms resulting from several genetic variants and environmental factors. The unique anatomy and physiology of the eye facilitate validation of cutting-edge gene editing treatments. Genome editing developments have allowed researchers to treat a variety of diseases, including ocular disorders.

View Article and Find Full Text PDF

Metabolism-driven chromatin dynamics: Molecular principles and technological advances.

Mol Cell

January 2025

Department of Genetics and Development and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

Cells integrate metabolic information into core molecular processes such as transcription to adapt to environmental changes. Chromatin, the physiological template of the eukaryotic genome, has emerged as a sensor and rheostat for fluctuating intracellular metabolites. In this review, we highlight the growing list of chromatin-associated metabolites that are derived from diverse sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!