Spinal cord injury (SCI) leads to devastating physical consequences, such as severe sensorimotor dysfunction even lifetime disability, by damaging the corticospinal system. The conventional opinion that SCI is intractable due to the poor regeneration of neurons in the adult central nervous system (CNS) needs to be revisited as the CNS is capable of considerable plasticity, which underlie recovery from neural injury. Substantial spontaneous neuroplasticity has been demonstrated in the corticospinal motor circuitry following SCI. Some of these plastic changes appear to be beneficial while others are detrimental toward locomotor function recovery after SCI. The beneficial corticospinal plasticity in the spared corticospinal circuits can be harnessed therapeutically by multiple contemporary neuromodulatory approaches, especially the electrical stimulation-based modalities, in an activity-dependent manner to improve functional outcomes in post-SCI rehabilitation. Silent synapse generation and unsilencing contribute to profound neuroplasticity that is implicated in a variety of neurological disorders, thus they may be involved in the corticospinal motor circuit neuroplasticity following SCI. Exploring the underlying mechanisms of silent synapse-mediated neuroplasticity in the corticospinal motor circuitry that may be exploited by neuromodulation will inform a novel direction for optimizing therapeutic repair strategies and rehabilitative interventions in SCI patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941655 | PMC |
http://dx.doi.org/10.1016/j.ibneur.2022.08.005 | DOI Listing |
Sci Rep
December 2024
BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.
A novel variant of paired-associative stimulation (PAS) consisting of high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) above the motor cortex, called high-PAS, can lead to improved motor function in patients with incomplete spinal cord injury. In PAS, the interstimulus interval (ISI) between the PNS and TMS pulses plays a significant role in the location of the intended effect of the induced plastic changes. While conventional PAS protocols (single TMS pulse often applied with intensity close to resting motor threshold, and single PNS pulse) usually require precisely defined ISIs, high-PAS can induce plasticity at a wide range of ISIs and also in spite of small ISI errors, which is helpful in clinical settings where precise ISI determination can be challenging.
View Article and Find Full Text PDFBrain Stimul
December 2024
Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA. Electronic address:
Background: Transcranial magnetic stimulation (TMS) interventions could feasibly treat stroke-related motor impairments, but their effects are highly variable. Brain state-dependent TMS approaches are a promising solution to this problem, but inter-individual variation in lesion location and oscillatory dynamics can make translating them to the poststroke brain challenging. Personalized brain state-dependent approaches specifically designed to address these challenges are needed.
View Article and Find Full Text PDFRinsho Shinkeigaku
December 2024
Section of Human Neurophysiology, Institute of Biomedical Sciences, Fukushima Medical University.
I have reviewed the utility of clinical neurophysiological examinations in recently highlighted functional neurological disorders (FND) focusing mainly on functional movement disorders (FMD). There are many neurophysiological methods useful for diagnosis of FMD. I will hereafter summarize a few of them in the following part.
View Article and Find Full Text PDFJ Mot Behav
December 2024
Laboratoire de recherche Biomécanique & Neurophysiologique en Réadaptation neuro-musculo-squelettique, Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Chicoutimi, Canada.
This review verified the extent, variety, quality and main findings of studies that have tested the neurophysiological and clinical effects of muscle tendon vibration (VIB) in individuals with sensorimotor impairments. The search was conducted on PubMed, CINAHL, and SportDiscuss up to April 2024. Studies were selected if they included humans with neurological impairments, applied VIB and used at least one measure of corticospinal excitability using transcranial magnetic stimulation (TMS).
View Article and Find Full Text PDFClin Neurophysiol
December 2024
REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
Objective: Corticospinal excitability can be quantified using motor-evoked potentials (MEP) following transcranial magnetic stimulation (TMS). However, the inherent variability of MEPs poses significant challenges. We establish a framework using personal and experimental factors to select the optimal number of trials (n) required for reliable MEP estimates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!