A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of sprinting velocity on anterior cruciate ligament and knee load during sidestep cutting. | LitMetric

Effect of sprinting velocity on anterior cruciate ligament and knee load during sidestep cutting.

Front Bioeng Biotechnol

Department of Physical Education, Hanyang University, Seoul, Republic of Korea.

Published: February 2023

The purpose of the study was to investigate the effect of an increase in sprinting velocity on the anterior cruciate ligament (ACL) load, knee joint load, and activation of femoral muscles using the musculoskeletal modeling approach. Fourteen high school male athletes were recruited (age: 17.4 ± 0.7 years, height: 1.75 ± 0.04 m, weight: 73.3 ± 8.94 kg), with the right foot dominant and physical activity level of about 3-4 h per day. The kinematics, kinetics, and co-contraction index (CCI) of the extensors and flexors of the right leg's femoral muscles were calculated. The anterior cruciate ligament load was estimated using the musculoskeletal modeling method. In the results, it was observed that the anterior cruciate ligament load ( < 0.017) increased as sidestep cutting velocity increased, resulting in increased adduction ( < 0.017) and the internal rotation moment of the knee joint. This was significantly higher than when sprinting at a similar velocity. The co-contraction index result, which represents the balanced activation of the femoral extensor and flexor muscles, showed a tendency of decrement with increasing sprinting velocity during sidestep cutting ( < 0.017), whereas no significant differences were observed when running at different sprinting conditions. Therefore, we postulate that factors such as knee joint shear force, extended landing posture with increasing sprinting velocity, internal rotation moment, and femoral muscle activity imbalance influence the increase of anterior cruciate ligament load during a sidestep cutting maneuver.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941960PMC
http://dx.doi.org/10.3389/fbioe.2023.1033590DOI Listing

Publication Analysis

Top Keywords

sprinting velocity
20
anterior cruciate
20
cruciate ligament
20
sidestep cutting
16
knee joint
12
ligament load
12
velocity anterior
8
load sidestep
8
activation femoral
8
femoral muscles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!